Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A recombinant Listeria monocytogenes vaccine expressing a model tumour antigen protects mice against lethal tumour cell challenge and causes regression of established tumours

Abstract

Listeria monocytogenes is an intracellular organism that has the unusual ability to live in the cytoplasm of the cell. It is thus a good vector for targeting protein antigens to the cellular arm of the immune response. Here we use a model system, consisting of colon and renal carcinomas that express the influenza virus nucleoprotein and a recombinant L. monocytogenes that secretes this antigen, to test the potential of this organism as a cancer immunotherapeutic agent. We show that this recombinant organism can not only protect mice against lethal challenge with tumour cells that express the antigen, but can also cause regression of established macroscopic tumours in an antigen-specific T-cell-dependent manner.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Kaufmann, S.H.E. Immunity to intracellular bacteria. Annu. Rev. Immun. 11, 129–163 (1993).

    CAS  Article  Google Scholar 

  2. 2

    Cossart, P. et al. Listeriolysin O is essential for virulence of Listeria monocytogenes: Direct evidence obtained by gene complementation. Infect. Immun. 57, 3269–3636 (1989).

    Google Scholar 

  3. 3

    Tilney, L.G. & Portnoy, D.A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes . J. Cell Biol. 109, 1597–1608 (1989).

    CAS  Article  Google Scholar 

  4. 4

    Berche, P., Gaillard, J. & Sansonetti, P.J. Intracellular growth of Listeria monocytogenes as a prerequisite for in vivo induction of T cell mediated immunity. J. Immun. 138, 2266–2271 (1987).

    CAS  PubMed  Google Scholar 

  5. 5

    Hahn, H. & Kaufmann, S.H.E. The role of cell mediated immunity to bacterial infections. Rev. infect. Dis. 3, 1221–1250 (1991).

    Article  Google Scholar 

  6. 6

    Kaufmann, S.H.E., Hug, E., Vath, U. & Muller, I. Effective protection against Listeria monocytogenes and delayed type hypersensitivity to Listeria antigens depend on cooperation between specific L3T4+ and Lyt2+ T Cells. Infect. Immun. 48, 263–266 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Schafer, R., Portnoy, D.A., Brassell, S.A. & Paterson, Y. Induction of a cellular immune response to a foreign antigen by a recombinant Listeria monocytogenes vaccine. J. Immun. 149, 53–59 (1992).

    CAS  PubMed  Google Scholar 

  8. 8

    Ikonomidis, G., Paterson, Y., Kos, F.J. & Portnoy, D.A. Delivery of a viral antigen to the class I processing and presentation pathway of Listeria monocytogenes . J. exp. Med. 180, 2209–2218 (1994).

    CAS  Article  Google Scholar 

  9. 9

    Ikonomidis, G., Frankel, F.R., Portnoy, D.A. & Paterson, Y. Listeria monocytogenes: A novel live vaccine vector. in Vaccines 95, (ed. Brown, F., Charnock, R., Ginsberg, H. & Norrby, E.) (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York) (in the press).

  10. 10

    Boon, T., Cerottini, J.-C., Van den Eynde, B. & van der Bruggen, P. Tumour antigens recognized by T lymphocytes. Annu. Rev. Immun. 12, 337–365 (1994).

    CAS  Article  Google Scholar 

  11. 11

    Coulie, P. et al. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. exp. Med. 180, 35–42 (1994).

    CAS  Article  Google Scholar 

  12. 12

    Cox, A.L. et al. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 264, 716–719 (1994).

    CAS  Article  Google Scholar 

  13. 13

    Gaugler, B. et al. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J. exp. Med. 179, 921–930 (1994).

    CAS  Article  Google Scholar 

  14. 14

    Topalian, S.L. et al. Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene. Proc. natn. Acad. Sci. U.S.A. 91, 9461–9465 (1994).

    CAS  Article  Google Scholar 

  15. 15

    Kawakami, Y. et al. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into the tumor. Proc. natn. Acad. Sci. U.S.A. 91, 3515–3519 (1994).

    CAS  Article  Google Scholar 

  16. 16

    Fearon, E.R., Itaya, T., Hunt, B., Vogelstein, B. & Frost, P. Induction in a murine tumor of immunogenic tumor variants by transfection with a foreign gene. Cancer Res. 38, 2975–2980 (1988).

    Google Scholar 

  17. 17

    Murphy, G.P. & Hushresky, W.J.J. A murine renal cell carcinoma. J. natn. Cancer Inst. 50, 1013–1025 (1973).

    CAS  Article  Google Scholar 

  18. 18

    Schreiber, H. Tumor immunology. in Fundamental Immunology (ed. Paul, W.E.) chapt. 32 (Raven, New York, 1993).

    Google Scholar 

  19. 19

    Campbell, M.J., Esserman, L. & Levy, R. Immunotherapy of established murine B cell lymphoma: Combination of idiotype immunization and cyclophosphamide. J. Immun. 141, 3227–3233 (1988).

    CAS  PubMed  Google Scholar 

  20. 20

    Pardoll, D.M. Cancer vaccines. Trends pharmacol. Sci. 14, 202–208 (1993).

    CAS  Article  Google Scholar 

  21. 21

    Asher, A. et al. Murine tumor cells transduced with the gene for tumor necrosis factor-α. J. Immun. 146, 3227–3234 (1991).

    CAS  PubMed  Google Scholar 

  22. 22

    Blankenstein, T. et al. Tumor suppression after tumor cell-targeted tumor necrosis factor gene transfer. J. exp. Med. 173, 1047–1052 (1991).

    CAS  Article  Google Scholar 

  23. 23

    Porgador, A. et al. Interleukin 6 gene transfection into Lewis lung carcinoma tumor cells suppresses the malignant phenotype and confers immunotherapeutic competence against parental metastatic cells. Cancer Res. 52, 3679–3686 (1992).

    CAS  PubMed  Google Scholar 

  24. 24

    Baskar, S. et al. Constitutive expression of B7 restores the immunogenicity of tumor cells expressing truncated MHC class II molecules. Proc. natn. Acad. Sci. U.S.A. 90, 5687–5690 (1993).

    CAS  Article  Google Scholar 

  25. 25

    Guo, Y. et al. Effective tumor vaccine generated by fusion of hepatoma cells with activated B cells. Science 263, 518–520 (1994).

    CAS  Article  Google Scholar 

  26. 26

    Hsieh, C.-S. et al. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547–549 (1993).

    CAS  Article  Google Scholar 

  27. 27

    Restifo, N.P. Identification of human cancers deficient in antigen processing. J. exp. Med. 177, 265–272 (1993).

    CAS  Article  Google Scholar 

  28. 28

    Hui, K., Grosveld, F. & Festenstein, H. Rejection of transplantable AKR leukaemia cells following MHC DNA-mediated cell transformation. Nature 311, 750–752 (1984).

    CAS  Article  Google Scholar 

  29. 29

    Wallich, R. et al. Abrogation of metastatic properties of tumour cells by de novo expression of H-2k antigens following H-2 gene transfection. Nature 315, 301–305 (1985).

    CAS  Article  Google Scholar 

  30. 30

    Doyle, A. et al. Markedly decreased expression of class I histocompatibility antigens, protein and mRNA on human small-cell lung cancer. J. exp. Med. 161, 1135–1151 (1985).

    CAS  Article  Google Scholar 

  31. 31

    Lassam, N. & Jay, G. Suppression of MHC class I RNA in highly oncogenic cells occurs at the level of transcription initiation. J. Immun. 143, 3792–3797 (1989).

    CAS  PubMed  Google Scholar 

  32. 32

    Slingluff, C.L., Hunt, D.F. & Engelhard, V.H. Direct analysis of tumour-associated peptide antigens. Curr. Opin. Immun. 6, 733–740 (1994).

    CAS  Article  Google Scholar 

  33. 33

    van der Bruggen, P.C. et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1650 (1991).

    CAS  Article  Google Scholar 

  34. 34

    Cason, J., Khan, S.A. & Best, J.M. Towards vaccines against human papillomavirus type-16 genital infections. Vaccine 11, 603–611 (1993).

    CAS  Article  Google Scholar 

  35. 35

    Wu, T.-C. Immunology of the human papilloma virus in relation to cancer. Curr. Opin. Immun. 6, 746–754 (1994).

    CAS  Article  Google Scholar 

  36. 36

    Fetten, J.H., Roy, N. & Gilboa, E. A frameshift mutation at the NH2 terminus of the nucleoprotein gene does not affect generation of cytotoxic T lymphocyte epitopes. J. Immun. 147, 2697–2705 (1991).

    CAS  PubMed  Google Scholar 

  37. 37

    Huang, A.T.C. et al. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264, 961–965 (1994).

    CAS  Article  Google Scholar 

  38. 38

    Geoffroy, C. et al. Purification and characterization of an extracellular 29-kilodalton phospholipase C from Listeria monocytogenes . Infect. Immun. 59, 2382–2388 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Kruisbeek, A. In vivo depletion of CD4 and CD8 specific T cells. in Current Protocols in Immunology (eds Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M., Strober, W.) V. 1, 4.1.1–4.1.2 (Wiley, New York, 1994).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pan, ZK., Ikonomidis, G., Lazenby, A. et al. A recombinant Listeria monocytogenes vaccine expressing a model tumour antigen protects mice against lethal tumour cell challenge and causes regression of established tumours. Nat Med 1, 471–477 (1995). https://doi.org/10.1038/nm0595-471

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing