Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Angiogenesis: escape from hypoxia

Current attempts to block angiogenesis during cancer and other diseases are limited partly by their effects on normal angiogenic processes. Could a more targeted approach emerge from the identification of a factor required for pathological angiogenesis under conditions of hypoxia (pages 553–558)?

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Replicative stress and DNA repair pathways induced by hypoxia.

Kim Caesar

References

  1. Economopoulou, M. et al. Nat. Med. 15, 553–558 (2009).

    Article  CAS  Google Scholar 

  2. Hammond, E.M. & Giaccia, A.J. DNA Repair (Amst.) 3, 1117–1122 (2004).

    Article  CAS  Google Scholar 

  3. Löffler, M., Jockel, J., Schuster, G. & Becker, C. Mol. Cell. Biochem. 174, 125–129 (1997).

    Article  Google Scholar 

  4. Nordlund, P. & Reichard, P. Annu. Rev. Biochem. 75, 681–706 (2006).

    Article  CAS  Google Scholar 

  5. Hammond, E.M., Dorie, M.J. & Giaccia, A.J. J. Biol. Chem. 278, 12207–12213 (2003).

    Article  CAS  Google Scholar 

  6. Bonner, W.M. et al. Nat. Rev. Cancer 8, 957–967 (2008).

    Article  CAS  Google Scholar 

  7. Green, S.L., Freiberg, R.A. & Giaccia, A.J. Mol. Cell. Biol. 21, 1196–1206 (2001).

    Article  CAS  Google Scholar 

  8. Hammond, E.M., Denko, N.C., Dorie, M.J., Abraham, R.T. & Giaccia, A.J. Mol. Cell. Biol. 22, 1834–1843 (2002).

    Article  CAS  Google Scholar 

  9. Celeste, A. et al. Science 296, 922–927 (2002).

    Article  CAS  Google Scholar 

  10. Huen, M.S. et al. Cell 131, 901–914 (2007).

    Article  CAS  Google Scholar 

  11. Kolas, N.K. et al. Science 318, 1637–1640 (2007).

    Article  CAS  Google Scholar 

  12. Mailand, N. et al. Cell 131, 887–900 (2007).

    Article  CAS  Google Scholar 

  13. Bencokova, Z. et al. Mol. Cell. Biol. 29, 526–537 (2009).

    Article  CAS  Google Scholar 

  14. Pugh, C.W. & Ratcliffe, P.J. Nat. Med. 9, 677–684 (2003).

    Article  CAS  Google Scholar 

  15. Qing, G. & Simon, M.C. Curr. Opin. Genet. Dev. 19, 60–66 (2009).

    Article  CAS  Google Scholar 

  16. Gordan, J.D. et al. Cancer Cell 14, 435–446 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J Ratcliffe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coleman, M., Ratcliffe, P. Angiogenesis: escape from hypoxia. Nat Med 15, 491–493 (2009). https://doi.org/10.1038/nm0509-491

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0509-491

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing