Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Novel strategies for the treatment of sepsis

Abstract

The history of therapeutic interventions in clinical trials for sepsis has been referred to as the “graveyard for pharmaceutical companies.” That is now set to change, as research provides hope for new approaches that will be therapeutically effective in humans with sepsis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Excessive inflammatory mediator production during sepsis.
Figure 2: Clinical trials in sepsis.
Figure 3: Proposed contributions of HMGB1 to sepsis.
Figure 4: Proposed mechanisms of MIF in sepsis.
Figure 5: Roles of C5a and C5aR in sepsis.

Similar content being viewed by others

References

  1. Angus, D.C. et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29, 1303–1310 (2001).

    Article  CAS  Google Scholar 

  2. Bennett, I.L. et al. The effectiveness of hydrocortisone in the management of severe infection. JAMA 183, 462–465 (1963).

    Article  Google Scholar 

  3. Lefering, R. & Neugebauer, E.A. Steroid controversy in sepsis and septic shock: a meta-analysis. Crit. Care Med. 23, 1294–1303 (1995).

    Article  CAS  Google Scholar 

  4. Annane, D. et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 288, 862–871 (2002).

    Article  CAS  Google Scholar 

  5. Meduri, G.U. et al. Effect of prolonged methylprednisolone therapy in unresolving acute respiratory distress syndrome: a randomized controlled trial. JAMA 280, 159–165 (1998).

    Article  CAS  Google Scholar 

  6. Meduri, G.U., Tolley, E.A., Chrousos, G.P. & Stentz, F. Prolonged methylprednisolone treatment suppresses systemic inflammation in patients with unresolving acute respiratory distress syndrome: evidence for inadequate endogenous glucocorticoid secretion and inflammation-induced immune cell resistance to glucocorticoids. Am. J. Respir. Crit. Care Med. 165, 983–991 (2002).

    Article  Google Scholar 

  7. Meduri, G.U., Kanangat, S., Stefan, J., Tolley, E. & Schaberg, D. Cytokines IL-1β, IL-6, and TNF-α enhance in vitro growth of bacteria. Am. J. Respir Crit. Care Med. 160, 961–967 (1999).

    Article  CAS  Google Scholar 

  8. Kanangat, S. et al. Effects of cytokines and endotoxin on the intracellular growth of bacteria. Infect. Immun. 67, 2834–2840 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Davis, C.E., Brown, K.R., Douglas, H., Tate, W.J & Braude, A.I. Prevention of death from endotoxin with antisera. I. The risk of fatal anaphylaxis to endotoxin. J. Immunol. 102, 563–572 (1969).

    CAS  PubMed  Google Scholar 

  10. Cohen, J. Adjunctive therapy in sepsis: a critical analysis of the clinical trial programme. Br. Med. Bull. 55, 212–225 (1999).

    Article  CAS  Google Scholar 

  11. Bone, R.C. et al. A second large controlled clinical study of E5, a monoclonal antibody to endotoxin: results of a prospective, multicenter, randomized, controlled trial. The E5 Sepsis Study Group. Crit. Care Med. 23, 994–1006 (1995).

    Article  CAS  Google Scholar 

  12. Ziegler, E.J. et al. Treatment of Gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial. The HA-1A Sepsis Study Group. N. Engl. J. Med. 324, 429–436 (1991).

    Article  CAS  Google Scholar 

  13. Warren, H.S. et al. Assessment of ability of murine and human anti-lipid A monoclonal antibodies to bind and neutralize lipopolysaccharide. J. Exp. Med. 177, 89–97 (1993).

    Article  CAS  Google Scholar 

  14. Michie, H.R. et al. Tumor necrosis factor and endotoxin induce similar metabolic responses in human beings. Surgery 104, 280–286 (1988).

    CAS  PubMed  Google Scholar 

  15. Beutler, B., Milsark, I.W. & Cerami, A.C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229, 869–871 (1985).

    Article  CAS  Google Scholar 

  16. Tracey, K.J. et al. Shock and tissue injury induced by recombinant human cachectin. Science 234, 470–474 (1986).

    Article  CAS  Google Scholar 

  17. Tracey, K.J. et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330, 662–664 (1987).

    Article  CAS  Google Scholar 

  18. Reinhart, K. & Karzai, W. Anti-tumor necrosis factor therapy in sepsis: update on clinical trials and lessons learned. Crit. Care Med. 29, S121–S125 (2001).

    Article  CAS  Google Scholar 

  19. Okusawa, S., Gelfand, J.A., Ikejima, T., Connolly, R.J. & Dinarello, C.A. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J. Clin. Invest. 81, 1162–1172 (1988).

    Article  CAS  Google Scholar 

  20. Ohlsson, K., Bjork, P., Bergenfeldt, M., Hageman, R. & Thompson, R.C. Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature 348, 550–552 (1990).

    Article  CAS  Google Scholar 

  21. Fisher, C.J., Jr. et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group. JAMA 271, 1836–1843 (1994).

    Article  Google Scholar 

  22. Opal, S.M. et al. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group. Crit. Care Med. 25, 1115–1124 (1997).

    Article  CAS  Google Scholar 

  23. Dhainaut, J.F. et al. Platelet-activating factor receptor antagonist BN 52021 in the treatment of severe sepsis: a randomized, double-blind, placebo-controlled, multicenter clinical trial. BN 52021 Sepsis Study Group. Crit. Care Med. 22, 1720–1728 (1994).

    Article  CAS  Google Scholar 

  24. Dhainaut, J.F. et al. Confirmatory platelet-activating factor receptor antagonist trial in patients with severe Gram-negative bacterial sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. BN 52021 Sepsis Investigator Group. Crit. Care Med. 26, 1963–1971 (1998).

    Article  CAS  Google Scholar 

  25. Bernard, G.R. et al. The effects of ibuprofen on the physiology and survival of patients with sepsis. The Ibuprofen in Sepsis Study Group. N. Engl. J. Med. 336, 912–918 (1997).

    Article  CAS  Google Scholar 

  26. Vincent, J.L. et al. A multi-centre, double-blind, placebo-controlled study of liposomal prostaglandin E1 (TLC C-53) in patients with acute respiratory distress syndrome. Intensive Care Med. 27, 1578–1583 (2001).

    Article  CAS  Google Scholar 

  27. Yu, M. & Tomasa, G. A double-blind, prospective, randomized trial of ketoconazole, a thromboxane synthetase inhibitor, in the prophylaxis of the adult respiratory distress syndrome. Crit. Care Med. 21, 1635–1642 (1993).

    Article  CAS  Google Scholar 

  28. Spies, C.D. et al. Influence of N-acetylcysteine on indirect indicators of tissue oxygenation in septic shock patients: results from a prospective, randomized, double-blind study. Crit. Care Med. 22, 1738–1746 (1994).

    Article  CAS  Google Scholar 

  29. Schilling, J., Cakmakci, M., Battig, U. & Geroulanos, S. A new approach in the treatment of hypotension in human septic shock by NG-monomethyl-l-arginine, an inhibitor of the nitric oxide synthetase. Intensive Care Med. 19, 227–231 (1993).

    Article  CAS  Google Scholar 

  30. Lorente, J.A., Landin, L., De Pablo, R., Renes, E. & Liste, D. L-arginine pathway in the sepsis syndrome. Crit. Care Med. 21, 1287–1295 (1993).

    Article  CAS  Google Scholar 

  31. Avontuur, J.A., Tutein Nolthenius, R.P., van Bodegom, J.W. & Bruining, H.A. Prolonged inhibition of nitric oxide synthesis in severe septic shock: a clinical study. Crit. Care Med. 26, 660–667 (1998).

    Article  CAS  Google Scholar 

  32. Fein, A.M. et al. Treatment of severe systemic inflammatory response syndrome and sepsis with a novel bradykinin antagonist, deltibant (CP-0127). Results of a randomized, double-blind, placebo-controlled trial. CP-0127 SIRS and Sepsis Study Group. JAMA 277, 482–487 (1997).

    Article  CAS  Google Scholar 

  33. Staubach, K.H. et al. Effect of pentoxifylline in severe sepsis: results of a randomized, double-blind, placebo-controlled study. Arch. Surg. 133, 94–100 (1998).

    Article  CAS  Google Scholar 

  34. Zeni, F. et al. Effects of pentoxifylline on circulating cytokine concentrations and hemodynamics in patients with septic shock: results from a double-blind, randomized, placebo-controlled study. Crit. Care Med. 24, 207–214 (1996).

    Article  CAS  Google Scholar 

  35. Fronhoffs, S. et al. The effect of C1-esterase inhibitor in definite and suspected streptococcal toxic shock syndrome. Report of seven patients. Intensive Care Med. 26, 1566–1570 (2000).

    Article  CAS  Google Scholar 

  36. Healy, D.P. New and emerging therapies for sepsis. Ann. Pharmacother. 36, 648–654 (2002).

    Article  CAS  Google Scholar 

  37. van der Poll, T. Immunotherapy of sepsis. Lancet Infect. Dis. 1, 165–174 (2001).

    Article  CAS  Google Scholar 

  38. Vincent, J.L., Sun, Q. & Dubois, M.J. Clinical trials of immunomodulatory therapies in severe sepsis and septic shock. Clin. Infect. Dis. 34, 1084–1093 (2002).

    Article  CAS  Google Scholar 

  39. Warren, B.L. et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 286, 1869–1878 (2001).

    Article  CAS  Google Scholar 

  40. Bernard, G.R. et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med. 344, 699–709 (2001).

    Article  CAS  Google Scholar 

  41. Warren, H.S., Suffredini, A.F., Eichacker, P.Q. & Munford, R.S. Risks and benefits of activated protein C treatment for severe sepsis. N. Engl. J. Med. 347, 1027–1030 (2002).

    Article  Google Scholar 

  42. Riewald, M., Petrovan, R.J., Donner, A., Mueller, B.M. & Ruf, W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 296, 1880–1882 (2002).

    Article  CAS  Google Scholar 

  43. Bustin, M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol. Cell. Biol. 19, 5237–5246 (1999).

    Article  CAS  Google Scholar 

  44. Wang, H., Yang, H., Czura, C.J., Sama, A.E. & Tracey, K.J. HMGB1 as a late mediator of lethal systemic inflammation. Am. J. Respir. Crit. Care Med. 164, 1768–1773 (2001).

    Article  CAS  Google Scholar 

  45. Andersson, U. et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med. 192, 565–570 (2000).

    Article  CAS  Google Scholar 

  46. Wang, H. et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285, 248–251 (1999).

    Article  CAS  Google Scholar 

  47. Fiuza, C. et al. Inflammatory promoting activity of HMGB1 on human microvascular endothelial cells. Blood 101, 2652–2660(2002).

    Article  Google Scholar 

  48. Sappington, P.L. et al. HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology 123, 790–802 (2002).

    Article  CAS  Google Scholar 

  49. Ulloa, L. et al. Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc. Natl. Acad. Sci. USA 99, 12351–12356 (2002).

    Article  CAS  Google Scholar 

  50. Calandra, T., Bernhagen, J., Mitchell, R.A. & Bucala, R. The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J. Exp. Med. 179, 1895–1902 (1994).

    Article  CAS  Google Scholar 

  51. Bernhagen, J. et al. MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature 365, 756–759 (1993).

    Article  CAS  Google Scholar 

  52. Bozza, M. et al. Targeted disruption of migration inhibitory factor gene reveals its critical role in sepsis. J. Exp. Med. 189, 341–346 (1999).

    Article  CAS  Google Scholar 

  53. Calandra, T. et al. MIF as a glucocorticoid-induced modulator of cytokine production. Nature 377, 68–71 (1995).

    Article  CAS  Google Scholar 

  54. Calandra, T. et al. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat. Med. 6, 164–170 (2000).

    Article  CAS  Google Scholar 

  55. Gando, S. et al. Macrophage migration inhibitory factor is a critical mediator of systemic inflammatory response syndrome. Intensive Care Med. 27, 1187–1193 (2001).

    Article  CAS  Google Scholar 

  56. Lehmann, L.E. et al. Plasma levels of macrophage migration inhibitory factor are elevated in patients with severe sepsis. Intensive Care Med. 27, 1412–1415 (2001).

    Article  CAS  Google Scholar 

  57. Satoskar, A.R., Bozza, M., Rodriguez Sosa, M., Lin, G. & David, J.R. Migration-inhibitory factor gene-deficient mice are susceptible to cutaneous Leishmania major infection. Infect. Immun. 69, 906–911 (2001).

    Article  CAS  Google Scholar 

  58. Koebernick, H. et al. Macrophage migration inhibitory factor (MIF) plays a pivotal role in immunity against Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 99, 13681–13686 (2002).

    Article  CAS  Google Scholar 

  59. Calandra, T., Spiegel, L.A., Metz, C.N. & Bucala, R. Macrophage migration inhibitory factor is a critical mediator of the activation of immune cells by exotoxins of Gram-positive bacteria. Proc. Natl. Acad. Sci. USA 95, 11383–11388 (1998).

    Article  CAS  Google Scholar 

  60. Mitchell, R.A. et al. Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: regulatory role in the innate immune response. Proc. Natl. Acad. Sci. USA 99, 345–350 (2002).

    Article  CAS  Google Scholar 

  61. Roger, T., David, J., Glauser, M.P. & Calandra, T. MIF regulates innate immune responses through modulation of Toll-like receptor 4. Nature 414, 920–924 (2001).

    Article  CAS  Google Scholar 

  62. Shin, H.S., Snyderman, R., Friedman, E., Mellors, A. & Mayer, M.M. Chemotactic and anaphylatoxic fragment cleaved from the fifth component of guinea pig complement. Science 162, 361–363 (1968).

    Article  CAS  Google Scholar 

  63. Goldstein, I.M. & Weissmann, G. Generation of C5-derived lysosomal enzyme-releasing activity (C5a) by lysates of leukocyte lysosomes. J. Immunol. 113, 1583–1588 (1974).

    CAS  Google Scholar 

  64. Sacks, T., Moldow, C.F., Craddock, P.R., Bowers, T.K. & Jacob, H.S. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J. Clin. Invest. 61, 1161–1167 (1978).

    Article  CAS  Google Scholar 

  65. Schumacher, W.A., Fantone, J.C., Kunkel, S.E., Webb, R.C. & Lucchesi, B.R. The anaphylatoxins C3a and C5a are vasodilators in the canine coronary vasculature in vitro and in vivo. Agents Actions 34, 345–349 (1991).

    Article  CAS  Google Scholar 

  66. Guo, R.F. et al. Protective effects of anti-C5a in sepsis-induced thymocyte apoptosis. J. Clin. Invest. 106, 1271–1280 (2000).

    Article  CAS  Google Scholar 

  67. Riedemann, N.C. et al. C5a receptor and thymocyte apoptosis in sepsis. FASEB J. 16, 887–888 (2002).

    Article  CAS  Google Scholar 

  68. Huber-Lang, M. et al. Role of C5a in multiorgan failure during sepsis. J. Immunol. 166, 1193–1199 (2001).

    Article  CAS  Google Scholar 

  69. Czermak, B.J. et al. Protective effects of C5a blockade in sepsis. Nat. Med. 5, 788–792 (1999).

    Article  CAS  Google Scholar 

  70. Riedemann, N.C. et al. Increased C5a receptor expression in sepsis. J. Clin. Invest. 110, 101–108 (2002).

    Article  CAS  Google Scholar 

  71. Huber-Lang, M.S. et al. Complement-induced impairment of innate immunity during sepsis. J. Immunol. 169, 3223–3231 (2002).

    Article  CAS  Google Scholar 

  72. Gerard, N.P. & Gerard, C. The chemotactic receptor for human C5a anaphylatoxin. Nature 349, 614–617 (1991).

    Article  CAS  Google Scholar 

  73. Riedemann, N.C. et al. Protective effects of IL-6 blockade in sepsis are linked to reduced C5a receptor expression. J. Immunol. 170, 503–507 (2003).

    Article  CAS  Google Scholar 

  74. Fitch, J.C. et al. Pharmacology and biological efficacy of a recombinant, humanized, single-chain antibody C5 complement inhibitor in patients undergoing coronary artery bypass graft surgery with cardiopulmonary bypass. Circulation 100, 2499–2506 (1999).

    Article  CAS  Google Scholar 

  75. Oberholzer, C., Oberholzer, A., Clare-Salzler, M. & Moldawer, L.L. Apoptosis in sepsis: a new target for therapeutic exploration. FASEB J. 15, 879–892 (2001).

    Article  CAS  Google Scholar 

  76. Hotchkiss, R.S. et al. Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc. Natl. Acad. Sci. USA 96, 14541–14546 (1999).

    Article  CAS  Google Scholar 

  77. Hotchkiss, R.S. et al. Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis. J. Immunol. 162, 4148–4156 (1999).

    CAS  PubMed  Google Scholar 

  78. Hotchkiss, R.S. et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J. Immunol. 166, 6952–6963 (2001).

    Article  CAS  Google Scholar 

  79. Eichacker, P.Q. et al. Risk and the efficacy of antiinflammatory agents: retrospective and confirmatory studies of sepsis. Am. J. Respir. Crit. Care Med. 166, 1197–1205 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riedemann, N., Guo, RF. & Ward, P. Novel strategies for the treatment of sepsis. Nat Med 9, 517–524 (2003). https://doi.org/10.1038/nm0503-517

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0503-517

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing