Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Nitric oxide's reactions with hemoglobin: a view through the SNO-storm

S-nitroso-hemoglobin (SNOHb) has been proposed to regulate blood flow and tissue oxygenation through allosterically controlled binding and delivery of nitric oxide (NO) and oxygen in the vasculature. This precept and the experiments that test it have provoked both ardent support and expanding dissent. An alternative view suggests that a physiologically tightly regulated balance of NO scavenging by hemoglobin and NO production by endothelial cells determines NO bioavailability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Opposing models for the role of hemoglobin in regulating NO bioavailability.

References

  1. Les prix Nobel: 1998. 210–307 (Nobel Foundation, Stockholm, Sweden, 1999).

  2. Jia, L., Bonaventura, C., Bonaventura, J. & Stamler, J.S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380, 221–226 (1996).

    Article  CAS  Google Scholar 

  3. Gow, A.J., Luchsinger, B.P., Pawloski, J.R., Singel, D.J. & Stamler, J.S. The oxyhemoglobin reaction of nitric oxide. Proc. Natl. Acad. Sci. USA 96, 9027–9032 (1999).

    Article  CAS  Google Scholar 

  4. Stamler, J.S. et al. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 276, 2034–2037 (1997).

    Article  CAS  Google Scholar 

  5. Gow, A.J. & Stamler, J.S. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 391, 169–173 (1998).

    Article  CAS  Google Scholar 

  6. McMahon, T.J. et al. Nitric oxide in the human respiratory cycle. Nat. Med. 3, 711–717 (2002).

    Article  Google Scholar 

  7. Garel, M.C. et al. Covalent binding of glutathione to hemoglobin. I. Inhibition of hemoglobin S polymerization. J. Biol. Chem. 261, 14704–14709 (1986).

    CAS  PubMed  Google Scholar 

  8. Perutz, M.F. Blood. Taking the pressure off. Nature 380, 205–206 (1996).

    Article  CAS  Google Scholar 

  9. Doyle, M.P. & Hoekstra, J.W. Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J. Inorg. Biochem. 14, 351–358 (1981).

    Article  CAS  Google Scholar 

  10. Herold, S., Exner, M. & Nauser, T. Kinetic and mechanistic studies of the NO*-mediated oxidation of oxymyoglobin and oxyhemoglobin. Biochemistry 40, 3385–3395 (2001).

    Article  CAS  Google Scholar 

  11. Dou, Y., Maillett, D.H., Eich, R.F. & Olson, J.S. Myoglobin as a model system for designing heme protein based blood substitutes. Biophys. Chem. 98, 127–148 (2002).

    Article  CAS  Google Scholar 

  12. Gross, S.S. & Lane, P. Physiological reactions of nitric oxide and hemoglobin: a radical rethink. Proc. Natl. Acad. Sci. USA 96, 9967–9969 (1999).

    Article  CAS  Google Scholar 

  13. Gladwin, M.T. et al. Relative role of heme nitrosylation and β-cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation. Proc. Natl. Acad. Sci. USA 97, 9943–9948 (2000).

    Article  CAS  Google Scholar 

  14. Huang, Z. et al. Nitric oxide binding to oxygenated hemoglobin under physiological conditions. Biochim. Biophys. Acta 1568, 252–260 (2001).

    Article  CAS  Google Scholar 

  15. Huang, Z. et al. Kinetics of nitric oxide binding to R-state hemoglobin. Biochem. Biophys. Res. Commun. 292, 812–818 (2002).

    Article  CAS  Google Scholar 

  16. Han, T.H., Hyduke, D.R., Vaughn, M.W., Fukuto, J.M. & Liao, J.C. Nitric oxide reaction with red blood cells and hemoglobin under heterogeneous conditions. Proc. Natl. Acad. Sci. USA 99, 7763–7768 (2002).

    Article  CAS  Google Scholar 

  17. Zhang, Y. & Hogg, N. Mixing artifacts from the bolus addition of nitric oxide to oxymyoglobin: implications for S-nitrosothiol formation. Free Radic. Biol. Med. 32, 1212–1219 (2002).

    Article  CAS  Google Scholar 

  18. Joshi, M.S. et al. Nitric oxide is consumed, rather than conserved, by reaction with oxyhemoglobin under physiological conditions. Proc. Natl. Acad. Sci. USA 17, 10341–10346 (2002).

    Article  Google Scholar 

  19. Luchsinger, B.P. et al. Routes to S-nitroso-hemoglobin formation with heme redox and preferential reactivity in the β subunits. Proc. Natl. Acad. Sci. USA 100, 461–466 (2003).

    Article  CAS  Google Scholar 

  20. Fernandez, B.O., Lorkovic, I.M. & Ford, P.C. Nitrite catalyzes reductive nitrosylation of the water-soluble ferri-heme model Fe(III)(TPPS) to Fe(II)(TPPS)(NO). Inorg. Chem. 42, 2–4 (2003).

    Article  CAS  Google Scholar 

  21. Spencer, N.Y. et al. Reoxygenation/deoxygenation cycles of nitrosylhemoglobin. Free Radic. Biol. Med. 33, S381 (2002).

    Google Scholar 

  22. McMahon, T.J. & Stamler, J.S. Concerted nitric oxide/oxygen delivery by hemoglobin. Meth. Enzymol. 301, 99–114 (1999).

    Article  CAS  Google Scholar 

  23. Patel, R.P. et al. Biochemical characterization of human S-nitrosohemoglobin. Effects on oxygen binding and transnitrosation. J. Biol. Chem. 274, 15487–15492 (1999).

    Article  CAS  Google Scholar 

  24. McMahon, T.J., Exton Stone, A., Bonaventura, J., Singel, D.J. & Solomon Stamler, J. Functional coupling of oxygen binding and vasoactivity in S-nitrosohemoglobin. J. Biol. Chem. 275, 16738–16745 (2000).

    Article  CAS  Google Scholar 

  25. Deem, S., Gladwin, M.T., Berg, J.T., Kerr, M.E. & Swenson, E.R. Effects of S-nitrosation of hemoglobin on hypoxic pulmonary vasoconstriction and nitric oxide flux. Am. J. Respir. Crit. Care Med. 163, 1164–1170 (2001).

    Article  CAS  Google Scholar 

  26. Deem, S. et al. Effects of S-nitrosation and cross-linking of hemoglobin on hypoxic pulmonary vasoconstriction in isolated rat lungs. Circ. Res. 91, 626–632 (2002).

    Article  CAS  Google Scholar 

  27. Gladwin, M.T. et al. S-nitrosohemoglobin is unstable in the reductive red cell environment and lacks O2/NO-linked allosteric function. J. Biol. Chem. 21, 27818–27828 (2002).

    Article  Google Scholar 

  28. Wolzt, M. et al. Biochemical characterization of S-nitrosohemoglobin. Mechanisms underlying synthesis, no release, and biological activity. J. Biol. Chem. 274, 28983–28990 (1999).

    Article  CAS  Google Scholar 

  29. Hobbs, A., Gladwin, M., Patel, R., Williams, D. & Butler, A. Haemoglobin: NO transporter, NO inactivator or NOne of the above? Trends Pharmacol. Sci. 23, 406–411 (2002).

    Article  CAS  Google Scholar 

  30. Agvald, P., Adding, L.C., Artlich, A., Persson, M.G. & Gustafsson, L.E. Mechanisms of nitric oxide generation from nitroglycerin and endogenous sources during hypoxia in vivo. Br. J. Pharmacol. 135, 373–382 (2002).

    Article  CAS  Google Scholar 

  31. Crawford, J.H., White, R.C. & Patel, R.P. Vasoactivity of S-nitrosohemoglobin: role of oxygen, heme and NO oxidation states. Blood first edition paper, 30 January 2003 (DOI 10.1182/blood-2002-12-3825).

  32. Marley, R., Feelisch, M., Holt, S. & Moore, K. A chemiluminescense-based assay for S-nitrosoalbumin and other plasma S-nitrosothiols. Free Radic. Res. 32, 1–9 (2000).

    Article  CAS  Google Scholar 

  33. Jourd'heuil, D., Gray, L. & Grisham, M.B. S-nitrosothiol formation in blood of lipopolysaccharide-treated rats. Biochem. Biophys. Res. Commun. 273, 22–26 (2000).

    Article  CAS  Google Scholar 

  34. Marley, R. et al. Formation of nanomolar concentrations of S-nitroso-albumin in human plasma by nitric oxide. Free Radic. Biol. Med. 31, 688–696 (2001).

    Article  CAS  Google Scholar 

  35. Rossi, R. et al. Physiological levels of S-nitrosothiols in human plasma. Circ. Res. 89, E47–E47 (2001).

    Article  CAS  Google Scholar 

  36. Cannon, R.O. et al. Effects of inhaled nitric oxide on regional blood flow are consistent with intravascular nitric oxide delivery. J. Clin. Invest. 108, 279–287 (2001).

    Article  CAS  Google Scholar 

  37. Rassaf, T., Bryan, N.S., Kelm, M. & Feelisch, M. Concomitant presence of N-nitroso and S-nitroso proteins in human plasma. Free Radic. Biol. Med. 33, 1590–1596 (2002).

    Article  CAS  Google Scholar 

  38. Feelisch, M. et al. Concomitant S-, N-, and heme-nitros(yl)ation in biological tissues and fluids: implications for the fate of NO in vivo. FASEB J. 16, 1775–1785 (2002).

    Article  CAS  Google Scholar 

  39. Rassaf, T. et al. Evidence for in vivo transport of bioactive nitric oxide in human plasma. J. Clin. Invest. 109, 1241–1248 (2002).

    Article  CAS  Google Scholar 

  40. Rees, D.D., Palmer, R.M., Hodson, H.F. & Moncada, S. A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br. J. Pharmacol. 96, 418–424 (1989).

    Article  CAS  Google Scholar 

  41. Amezcua, J.L., Palmer, R.M., de Souza, B.M. & Moncada, S. Nitric oxide synthesized from L-arginine regulates vascular tone in the coronary circulation of the rabbit. Br. J. Pharmacol. 97, 1119–1124 (1989).

    Article  CAS  Google Scholar 

  42. Chu, A. et al. Effects of inhibition of nitric oxide formation on basal vasomotion and endothelium-dependent responses of the coronary arteries in awake dogs. J. Clin. Invest. 87, 1964–1968 (1991).

    Article  CAS  Google Scholar 

  43. Panza, J.A., Casino, P.R., Kilcoyne, C.M. & Quyyumi, A.A. Role of endothelium-derived nitric oxide in the abnormal endothelium- dependent vascular relaxation of patients with essential hypertension. Circulation 87, 1468–1474 (1993).

    Article  CAS  Google Scholar 

  44. Quyyumi, A.A. et al. Nitric oxide activity in the human coronary circulation. Impact of risk factors for coronary atherosclerosis. J. Clin. Invest. 95, 1747–1755 (1995).

    Article  CAS  Google Scholar 

  45. Gladwin, M.T. et al. Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in humans. Proc. Natl. Acad. Sci. USA 97, 11482–11487 (2000).

    Article  CAS  Google Scholar 

  46. Schechter, A.N., Gladwin, M.T. & Cannon, R.O. NO solutions? J. Clin. Invest. 109, 1149–1151 (2002).

    Article  CAS  Google Scholar 

  47. Furchgott, R.F. & Zawadzki, J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373–376 (1980).

    Article  CAS  Google Scholar 

  48. Ignarro, L.J., Byrns, R.E., Buga, G.M. & Wood, K.S. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ. Res. 61, 866–879 (1987).

    Article  CAS  Google Scholar 

  49. Ignarro, L.J., Buga, G.M., Wood, K.S., Byrns, R.E. & Chaudhuri, G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA 84, 9265–9269 (1987).

    Article  CAS  Google Scholar 

  50. Palmer, R.M., Ferrige, A.G. & Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524–526 (1987).

    Article  CAS  Google Scholar 

  51. Palmer, R.M., Ashton, D.S. & Moncada, S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664–666 (1988).

    Article  CAS  Google Scholar 

  52. Coin, J.T. & Olson, J.S. The rate of oxygen uptake by human red blood cells. J. Biol. Chem. 254, 1178–1190 (1979).

    CAS  PubMed  Google Scholar 

  53. Liu, X. et al. Diffusion-limited reaction of free nitric oxide with erythrocytes. J. Biol. Chem. 273, 18709–18713 (1998).

    Article  CAS  Google Scholar 

  54. Vaughn, M.W., Kuo, L. & Liao, J.C. Effective diffusion distance of nitric oxide in the microcirculation. Am. J. Physiol. 274, H1705–H1714 (1998).

    CAS  PubMed  Google Scholar 

  55. Butler, A.R., Megson, I.L. & Wright, P.G. Diffusion of nitric oxide and scavenging by blood in the vasculature. Biochim. Biophys. Acta 1425, 168–176 (1998).

    Article  CAS  Google Scholar 

  56. Liao, J.C., Hein, T.W., Vaughn, M.W., Huang, K.T. & Kuo, L. Intravascular flow decreases erythrocyte consumption of nitric oxide. Proc. Natl. Acad. Sci. USA 96, 8757–8761 (1999).

    Article  CAS  Google Scholar 

  57. Vaughn, M.W., Huang, K.T., Kuo, L. & Liao, J.C. Erythrocytes possess an intrinsic barrier to nitric oxide consumption. J. Biol. Chem. 275, 2342–2348 (2000).

    Article  CAS  Google Scholar 

  58. Huang, K.T. et al. Modulation of nitric oxide bioavailability by erythrocytes. Proc. Natl. Acad. Sci. USA 98, 11771–11776 (2001).

    Article  CAS  Google Scholar 

  59. Reiter, C.D. et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat. Med. 8, 1383–1389 (2002).

    Article  CAS  Google Scholar 

  60. Deem, S., Swenson, E.R., Alberts, M.K., Hedges, R.G. & Bishop, M.J. Red-blood-cell augmentation of hypoxic pulmonary vasoconstriction: hematocrit dependence and the importance of nitric oxide. Am. J. Respir. Crit. Care Med. 157, 1181–1186 (1998).

    Article  CAS  Google Scholar 

  61. Doherty, D.H. et al. Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat. Biotechnol. 16, 672–676 (1998).

    Article  CAS  Google Scholar 

  62. Sloan, E.P. et al. Diaspirin cross-linked hemoglobin (DCLHb) in the treatment of severe traumatic hemorrhagic shock: a randomized controlled efficacy trial. JAMA 282, 1857–1864 (1999).

    Article  CAS  Google Scholar 

  63. Espey, M.G., Thomas, D.D., Miranda, K.M. & Wink, D.A. Focusing of nitric oxide mediated nitrosation and oxidative nitrosylation as a consequence of reaction with superoxide. Proc. Natl. Acad. Sci. USA 99, 11127–11132 (2002).

    Article  CAS  Google Scholar 

  64. Fox-Robichaud, A. et al. Inhaled NO as a viable antiadhesive therapy for ischemia/reperfusion injury of distal microvascular beds. J. Clin. Invest. 101, 2497–2505 (1998).

    Article  CAS  Google Scholar 

  65. Stamler, J.S. et al. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc. Natl. Acad. Sci. USA 89, 7674–7677 (1992).

    Article  CAS  Google Scholar 

  66. Lim, D.G. et al. Nitrolinoleate, a nitric oxide-derived mediator of cell function: synthesis, characterization, and vasomotor activity. Proc. Natl. Acad. Sci. USA 99, 15941–15946 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark T. Gladwin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gladwin, M., Lancaster, J., Freeman, B. et al. Nitric oxide's reactions with hemoglobin: a view through the SNO-storm. Nat Med 9, 496–500 (2003). https://doi.org/10.1038/nm0503-496

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0503-496

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing