Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice

Abstract

The transforming-growth-factor-β-activated kinase TAK1 is a member of the mitogen-activated protein kinase kinase kinase family, which couples extracellular stimuli to gene transcription. The in vivo function of TAK1 is not understood. Here, we investigated the potential involvement of TAK1 in cardiac hypertrophy. In adult mouse myocardium, TAK1 kinase activity was upregulated 7 days after aortic banding, a mechanical load that induces hypertrophy and expression of transforming growth factor β. An activating mutation of TAK1 expressed in myocardium of transgenic mice was sufficient to produce p38 mitogen-activated protein kinase phosphorylation in vivo , cardiac hypertrophy, interstitial fibrosis, severe myocardial dysfunction, ‘fetal’ gene induction, apoptosis and early lethality. Thus, TAK1 activity is induced as a delayed response to mechanical stress, and can suffice to elicit myocardial hypertrophy and fulminant heart failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TAK1 expression and activity in myocardium.
Figure 2: TAK1 and p38, in series, mediate TGF-β signaling to the SkA promoter.
Figure 3: TAK1 signaling to the SkA promoter through SRF and the SRF co-activator ATF6.
Figure 4: TGF-β induces p38-dependent phosphorylation of the ATF6 serine-rich activation domain.
Figure 5: Activated TAK1 produces cardiac hypertrophy in vivo, with early mortality.
Figure 6: Characterization of the TAK1 phenotype.

Similar content being viewed by others

References

  1. MacLellan, W.R. & Schneider, M.D. in Cardiac Development (eds. Harvey, R. & Rosenthal, N.) 405– 427 (Academic Press, San Diego, 1998).

    Google Scholar 

  2. Sadoshima, J. & Izumo, S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu. Rev. Physiol. 59, 551–571 (1997).

    Article  CAS  Google Scholar 

  3. MacLellan, W.R. & Schneider, M.D. Death by design - Programmed cell death in cardiovascular biology and disease. Circ. Res. 81, 137–144 ( 1997).

    Article  CAS  Google Scholar 

  4. Adams, J.W. et al. Enhanced Gαq signaling: A common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc. Natl. Acad. Sci. USA 95, 10140–10145 ( 1998).

    Article  CAS  Google Scholar 

  5. Hirota, H. et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 97, 189–198 ( 1999).

    Article  CAS  Google Scholar 

  6. Wang, Y.B. et al. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J. Biol. Chem. 273, 2161–2168 (1998).

    Article  CAS  Google Scholar 

  7. Nemoto, S., Sheng, Z.L. & Lin, A.N. Opposing effects of Jun kinase and p38 mitogen-activated protein kinases on cardiomyocyte hypertrophy. Mol. Cell. Biol. 18, 3518–3526 ( 1998).

    Article  CAS  Google Scholar 

  8. Yamaguchi, K. et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 270, 2008–2011 (1995).

    Article  CAS  Google Scholar 

  9. Moriguchi, T. et al. A novel kinase cascade mediated by mitogen-activated protein kinase kinase 6 and MKK3. J. Biol. Chem. 271, 13675–13679 (1996).

    Article  CAS  Google Scholar 

  10. Ninomiya-Tsuji, J. et al. The kinase TAK1 can activate the NIK-I kappa B as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398, 252–256 (1999).

    Article  CAS  Google Scholar 

  11. Villarreal, F.J. & Dillmann, W.H. Cardiac hypertrophy-induced changes in mRNA levels for TGF-β 1, fibronectin, and collagen. Am. J. Physiol. 262, H1861–1866 (1992).

    CAS  PubMed  Google Scholar 

  12. Parker, T.G., Packer, S.E. & Schneider, M.D. Peptide growth factors can provoke “fetal” contractile protein gene expression in rat cardiac myocytes. J. Clin. Invest. 85, 507–514 (1990).

    Article  CAS  Google Scholar 

  13. Shirakabe, K. et al. TAK1 mediates the ceramide signaling to stress-activated protein kinase c-Jun N-terminal kinase. J. Biol. Chem. 272, 8141–8144 (1997).

    Article  CAS  Google Scholar 

  14. Sano, Y. et al. ATF-2 Is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-β signaling. J. Biol. Chem. 274, 8949–8957 (1999).

    Article  CAS  Google Scholar 

  15. Kretzschmar, M. & Massague, J. SMADs: mediators and regulators of TGF-β signaling. Curr. Opin. Genet. Dev. 8, 103–111 ( 1998).

    Article  CAS  Google Scholar 

  16. MacLellan, W.R., Lee, T.C., Schwartz, R.J. & Schneider, M.D. Transforming growth factor-beta response elements of the skeletal alpha-actin gene: Combinatorial action of serum response factor, YY1, and the SV40 enhancer-binding protein, TEF-1. J. Biol. Chem. 269, 16754 –16760 (1994).

    CAS  PubMed  Google Scholar 

  17. Paradis, P., Maclellan, W.R., Belaguli, N.S., Schwartz, R.J. & Schneider, M.D. Serum response factor mediates AP-1-dependent induction of the skeletal α-actin promoter in ventricular myocytes. J. Biol. Chem. 271, 10827– 10833 (1996).

    Article  CAS  Google Scholar 

  18. Thuerauf, D.J. et al. p38 mitogen-activated protein kinase mediates the transcriptional induction of the atrial natriuretic factor gene through a serum response element. A potential role for the transcription factor ATF6. J. Biol. Chem. 273, 20636–20643 ( 1998).

    Article  CAS  Google Scholar 

  19. Croissant, J.D. et al. Avian serum response factor expression restricted primarily to muscle cell lineages is required for α-actin gene transcription. Dev Biol 177, 250–264 ( 1996).

    Article  CAS  Google Scholar 

  20. Chen, C.Y. & Schwartz, R.J. Recruitment of the tinman homolog nkx-2.5 by serum response factor activates cardiac α-actin gene transcription . Mol. Cell. Biol. 16, 6372– 6384 (1996).

    Article  CAS  Google Scholar 

  21. Zhu, C., Johansen, F.E. & Prywes, R. Interaction of ATF6 and serum response factor. Mol. Cell. Biol. 17, 4957–4966 (1997).

    Article  CAS  Google Scholar 

  22. Raingeaud, J., Whitmarsh, A.J., Barrett, T., Derijard, B. & Davis, R.J. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol. Cell. Biol. 16, 1247– 1255 (1996).

    Article  CAS  Google Scholar 

  23. Boluyt, M.O. et al. Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure. Marked upregulation of genes encoding extracellular matrix components. Circ Res 75, 23–32 (1994).

    Article  CAS  Google Scholar 

  24. Molkentin, J.D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215– 228 (1998).

    Article  CAS  Google Scholar 

  25. Georgakopoulos, D. et al. The pathogenesis of familial hypertrophic cardiomyopathy: Early and evolving effects from an α-cardiac myosin heavy chain missense mutation. Nature Med. 5, 327– 330 (1999).

    Article  CAS  Google Scholar 

  26. Taffet, G.E. et al. Noninvasive indexes of cardiac systolic and diastolic function in hyperthyroid and senescent mouse. Am. J. Physiol. 270, H2204–2209 (1996).

    CAS  PubMed  Google Scholar 

  27. Hartley, C.J., Michael, L.H. & Entman, M.L. Noninvasive measurement of ascending aortic blood velocity in mice. Am. J. Physiol. 268, H499 –505 (1995).

    CAS  PubMed  Google Scholar 

  28. Brown, T.L., Patil, S., Cianci, C.D., Morrow, J.S. & Howe, P.H. Transforming growth factor β induces caspase 3-independent cleavage of αII-spectrin (α-fodrin) coincident with apoptosis. J. Biol. Chem. 274, 23256– 23262 (1999).

    Article  CAS  Google Scholar 

  29. Yamazaki, T. et al. Mechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocytes. J. Clin. Invest. 96, 438–446 (1995).

    Article  CAS  Google Scholar 

  30. Charng, M.J. et al. A constitutive mutation of ALK5 disrupts cardiac looping and morphogenesis in mice. Dev. Biol. 199, 72 –79 (1998).

    Article  CAS  Google Scholar 

  31. Kapadia, S.R. et al. Hemodynamic regulation of tumor necrosis factor-α gene and protein expression in adult feline myocardium. Circ. Res. 81, 187–195 (1997).

    Article  CAS  Google Scholar 

  32. Shioi, T. et al. Increased expression of interleukin-1β and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the hypertrophied and failing heart with pressure overload. Circ. Res. 81, 664–671 (1997).

    Article  CAS  Google Scholar 

  33. Monzen, K. et al. Bone morphogenetic proteins induce cardiomyocyte differentiation through the mitogen-activated protein kinase kinase kinase TAK1 and cardiac transcription factors Csx/Nkx-2.5 and GATA-4. Mol. Cell. Biol. 19, 7096–7105 ( 1999).

    Article  CAS  Google Scholar 

  34. Agah, R. et al. Gene recombination in postmitotic cells: Targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo. J. Clin. Invest. 100, 169–179 (1997).

    Article  CAS  Google Scholar 

  35. Abdellatif, M., MacLellan, W.R. & Schneider, M.D. p21 Ras as a governor of global gene expression. J. Biol. Chem. 269, 15423–15426 (1994).

    CAS  PubMed  Google Scholar 

  36. Wrana, J.L. et al. TGFβ signals through a heteromeric protein kinase receptor complex. Cell 71, 1003– 1014 (1992).

    Article  CAS  Google Scholar 

  37. Ornitz, D.M., Moreadith, R.W. & Leder, P. Binary system for regulating transgene expression in mice: targeting int-2 gene expression with yeast GAL4/UAS control elements . Proc. Natl. Acad. Sci. USA 88, 698– 702 (1991).

    Article  CAS  Google Scholar 

  38. Johansen, F.E. & Prywes, R. Identification of transcriptional activation and inhibitory domains in serum response factor (SRF) by using GAL4-SRF constructs. Mol. Cell. Biol. 13, 4640–4647 (1993).

    Article  CAS  Google Scholar 

  39. Sadowski, I. & Ptashne, M. A vector for expressing GAL4(1–147) fusions in mammalian cells. Nucleic Acids Res. 17, 7539 (1989).

    Article  CAS  Google Scholar 

  40. Jiang, W. & Hunter, T. Identification and characterization of a human protein kinase related to budding yeast Cdc7p. Proc. Natl. Acad. Sci. USA 94, 14320–14325 (1997).

    Article  CAS  Google Scholar 

  41. Kirshenbaum, L.A., Abdellatif, M., Chakraborty, S. & Schneider, M.D. Human E2F-1 reactivates cell cycle progression in ventricular myocytes and represses cardiac gene transcription. Dev. Biol. 179 , 402–411 (1996).

    Article  CAS  Google Scholar 

  42. Subramaniam, A. et al. Tissue-specific regulation of the α-myosin heavy chain gene promoter in transgenic mice. J. Biol. Chem. 266 , 24613–24620 (1991).

    CAS  PubMed  Google Scholar 

  43. Depre, C. et al. Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nature Med. 4, 1269 –1275 (1998).

    Article  CAS  Google Scholar 

  44. Ritter, S.J. & Davies, P.J.A. Identification of a transforming growth factor-β 1/bone morphogenetic protein 4 (TGF-β1/BMP4) response element within the mouse tissue transglutaminase gene promoter. J. Biol. Chem. 273, 12798–12806 (1998).

    Article  CAS  Google Scholar 

  45. Rindt, H., Gulick, J., Knotts, S., Neumann, J. & Robbins, J. In vivo analysis of the murine β-myosin heavy chain gene promoter. J. Biol. Chem. 268, 5332–5338 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Boerwinkle, T. Pham and F. Ervin for technical assistance; P. Davies and G. Shipley for access to instrumentation for real-time RT–PCR, M. Abdellatif and R. MacLellan for comments, and R. Roberts for encouragement and support. A.Z. was a PhD candidate in the DeBakey Heart Center Graduate Program in Cardiovascular Sciences. This work was supported in part by grants from the National Institutes of Health, the National Aeronautics and Space Administration, and the Dunn Foundation to M.D.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Gaussin, V., Taffet, G. et al. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat Med 6, 556–563 (2000). https://doi.org/10.1038/75037

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75037

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing