Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The axis of interleukin 12 and gamma interferon regulates acute vascular xenogeneic rejection

Abstract

Recent advances using transgenic animals or exogenous complement inhibitors have demonstrated prevention of hyperacute rejection of vascularized organs, but not graft loss due to acute vascular rejection. Using various wild-type and cytokine-deficient mice strains, we have examined the mechanisms of acute vascular rejection. C57BL/6 mice deficient in interleukin12 or gamma interferon showed faster acute vascular rejection than did wild-type mice. Furthermore, mice defective in B-cell development showed no acute vascular rejection. These results demonstrate that the axis of interleukin 12 and gamma interferon provides a survival advantage in vascularized xenografts by delaying or preventing acute vascular rejection caused by a B cell-dependent mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathology of heart xenografts in BALB/c and C57BL/6 recipient mice.
Figure 2: IFN-γ is expressed more abundantly in C57BL/6 than BALB/c mice.
Figure 3: Pathology of heart xenografts in C57BL/6 IFN-γ−/− and IL-12p40−/− mice.
Figure 4: IFN-γ expression is decreased in C57BL/6 IL-12p40−/− mice.
Figure 5: B cells are required for acute vascular rejection.

Similar content being viewed by others

References

  1. Auchincloss, H.J. & Sachs, D.H. Xenogeneic transplantation . Annu. Rev. Immunol. 16, 433– 470 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. van den Bogaerde, J. & White, D.J. Xenogeneic transplantation . Br. Med. Bull. 53, 904– 920 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Leventhal, J.R., et al. The immunopathology of cardiac xenograft rejection in the guinea pig-to- rat model. Transplantation 56, 1–8 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Zaidi, A. et al. Life-supporting pig-to-primate renal xenotransplantation using genetically modified donors. Transplantation 65, 1584–1590 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Lin, S.S. et al. The role of antibodies in acute vascular rejection of pig-to-baboon cardiac transplants. J. Clin. Invest. 101, 1745–1756 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu, H. et al. Prolonged discordant xenograft survival and delayed xenograft rejection in a pig-to-baboon orthotopic cardiac xenograft model. J. Thorac. Cardiovasc. Surg. 115, 1342–1349 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Platt, J.L. et al. The role of natural antibodies in the activation of xenogenic endothelial cells. Transplantation 52, 1037 –1043 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Blakely, M.L. et al. Activation of intragraft endothelial and mononuclear cells during discordant xenograft rejection. Transplantation 58, 1059–1066 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Candinas, D. et al. T cell independence of macrophage and natural killer cell infiltration, cytokine production, and endothelial activation during delayed xenograft rejection. Transplantation 62, 1920–1927 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Matsumiya, G. et al. Analysis of rejection mechanism in the rat to mouse cardiac xenotransplantation. Role and characteristics of anti-endothelial cell antibodies . Transplantation 57, 1653– 1660 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Heinzel, F.P., Sadick, M.D., Holaday, B.J., Coffman, R.L. & Locksley, R.M. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J. Exp. Med. 169, 59–72 ( 1989).

    Article  CAS  PubMed  Google Scholar 

  12. Sayegh, M.H. et al. CD28-B7 blockade after alloantigenic challenge in vivo inhibits Th1 cytokines but spares Th2. J. Exp. Med. 181, 1869–1874 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Nickerson, P. et al. Manipulation of cytokine networks in transplantation: false hope or realistic opportunity for tolerance? Transplantation 63, 489–494 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Takeuchi, T., Lowry, R.P. & Konieczny, B. Heart allografts in murine systems. The differential activation of Th2- like effector cells in peripheral tolerance. Transplantation 53, 1281–1294 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Trinchieri, G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu. Rev. Immunol. 13, 251–276 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350, 423– 426 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Lauwerys, B.R., Renauld, J.C. & Houssiau, F.A. Inhibition of in vitro immunoglobulin production by IL-12 in murine chronic graft-vs.-host disease: synergism with IL-18. Eur. J. Immunol. 28, 2017–2024 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Morris, S.C. et al. Effects of IL-12 on in vivo cytokine gene expression and Ig isotype selection. J.Immunol. 152, 1047–1056 (1994).

    CAS  PubMed  Google Scholar 

  19. Yoshimoto, T., Okamura, H., Tagawa, Y.I., Iwakura, Y. & Nakanishi, K. Interleukin 18 together with interleukin 12 inhibits IgE production by induction of interferon-gamma production from activated B cells. Proc. Natl. Acad. Sci. USA 94, 3948–3953 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abed, N.S., Chace, J.H., Fleming, A.L. & Cowdery, J.S. Interferon-gamma regulation of B lymphocyte differentiation: activation of B cells is a prerequisite for IFN-gamma-mediated inhibition of B cell differentiation . Cell Immunol. 153, 356– 366 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, H., et al. Complement inhibition with an anti-C5 monoclonal antibody prevents hyperacute rejection in a xenograft heart transplantation model. Transplantation 68, 1643–1651 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, Z. et al. Pattern of liver, kidney, heart, and intestine allograft rejection in different mouse strain combinations. Transplantation 62, 1267–1272 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Piccotti, J.R. et al. IL-12 antagonism induces T helper 2 responses, yet exacerbates cardiac allograft rejection. Evidence against a dominant protective role for T helper 2 cytokines in alloimmunity. J. Immunol. 157 , 1951–1957 (1996).

    CAS  PubMed  Google Scholar 

  24. Piccotti, J.R. et al. Alloantigen-reactive Th1 development in IL-12-deficient mice . J. Immunol. 160, 1132– 1138 (1998).

    CAS  PubMed  Google Scholar 

  25. Murphy, B., Auchincloss, H.J., Carpenter, C.B. & Sayegh, M.H. T cell recognition of xeno-MHC peptides during concordant xenograft rejection . Transplantation 61, 1133– 1137 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Konieczny, B.T. et al. IFN-γ is critical for long-term allograft survival induced by blocking the CD28 and CD40 ligand T cell costimulation pathways. J. Immunol. 160, 2059–2064 (1998).

    CAS  PubMed  Google Scholar 

  27. Markees, T.G. et al. Long-term survival of skin allografts induced by donor splenocytes and anti-CD154 antibody in thymectomized mice requires CD4(+) T cells, interferon-γ, and CTLA4. J. Clin. Invest. 101, 2446– 2455 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sypek, J.P. et al. Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response. J. Exp. Med. 177, 1797–1802 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Yoshida, A., Koide, Y., Uchijima, M. & Yoshida, T.O. IFN-gamma induces IL-12 mRNA expression by a murine macrophage cell line, J774. Biochem. Biophys. Res. Commun. 198, 857– 861 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Waterworth, P.D. et al. Pig-to-primate cardiac xenotransplantation and cyclophosphamide therapy. Transplant. Proc. 29, 899– 900 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Bhatti, F.N. et al. Three-month survival of HDAFF transgenic pig hearts transplanted into primates. Transplant. Proc. 31, 958 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Zaidi, A. et al. Life-supporting pig-to-primate renal xenotransplantation using genetically modified donors. Transplantation 65, 1584–1590 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Hutchinson, I.V., Pravica, V., Perrey, C. & Sinnott, P. Cytokine gene polymorphisms and relevance to forms of rejection. Transplant. Proc. 31, 734–736 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  34. Turner, D. et al. Cytokine gene polymorphism and heart transplant rejection . Transplantation 64, 776– 779 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Dalton, D.K. et al. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 259, 1739 –1742 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Noben-Trauth, N., Kropf, P. & Muller, I. Susceptibility to Leishmania major infection in interleukin-4-deficient mice. Science 271, 987– 990 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Magram, J. et al. IL-12-deficient mice are defective in IFN γ production and type 1 cytokine responses. Immunity 4, 471–481 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350, 423– 426 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Corry, R.J., Winn, H.J. & Russell, P.S. Primarily vascularized allografts of hearts in mice. The role of H-2D, H-2K, and non-H-2 antigens in rejection. Transplantation 16, 343–350 ( 1973).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the technical assistance of A. Leaist, D.A. Martin and J.D. Andrews. The authors also thank J. Wang and J. Jiang for their assistance with microsurgeries and A. Jevnikar and B. Singh for their review of this manuscript. This work has been supported by grants from the Multi-Organ Transplant Program of the London Health Sciences Centre, the Kidney Foundation of Canada, and the Heart and Stroke foundation of Canada. D.J.K. is a Medical Research Council of Canada scholar and M.D. is a Medical Research Council of Canada student scholar.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David J. Kelvin or Robert Zhong.

Additional information

Department of Surgery

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., DeVries, M., Deng, S. et al. The axis of interleukin 12 and gamma interferon regulates acute vascular xenogeneic rejection. Nat Med 6, 549–555 (2000). https://doi.org/10.1038/75029

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75029

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing