Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin

Abstract

Extensive research has failed to clarify the mechanism of action of nitrous oxide (N2O, laughing gas), a widely used inhalational anesthetic and drug of abuse. Other general anesthetics are thought to act by one of two mechanisms—blockade of NMDA glutamate receptors or enhancement of CABAergic inhibition1. Here we show that N2O, at anesthetically-relevant concentrations, inhibits both ionic currents and excitotoxic neurodegeneration mediated through NMDA receptors and, like other NMDA antagonists, produces neurotoxic side effects which can be prevented by drugs that enhance CABAergic inhibition. The favorable safety record of N2O may be explained by the low concentrations typically used and by the fact that it is usually used in combination with CABAergic anesthetics that counteract its neurotoxic potential.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Franks, N.P. & Lieb, W.R. Molecular and cellular mechanisms of general anaesthesia. Nature 367, 607–614 (1994).

    CAS  Article  Google Scholar 

  2. 2

    Lodge, D. & Anis, N.A. Effects of phencyclidine on excitatory amino acid activation of spinal interneurons in the cat. Eur. J. Pharmacol. 77, 203–204 (1982).

    CAS  Article  Google Scholar 

  3. 3

    Lodge, D. et al. Excitatory amino acids and Phencyclidine-like drugs. In: Excitatory Amino Acid Transmission . Hicks TP, Lodge D and McLennan H (Eds). (New York: Alan R. LissInc), pp 83-90 (1987).

    Google Scholar 

  4. 4

    Rothman, S.M. The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J.Neumsci. 4, 1483–1489 (1991).

    Google Scholar 

  5. 5

    Choi, D.W. Glutamate neurotoxicity and disease of the nervous system. Neuron 1, 623–634 (1988).

    CAS  Article  Google Scholar 

  6. 6

    Olney, J.W. Excitatory amino acids and neuropsychiatric disorders. Biol. Psychiatry 26, 505–525 (1989).

    CAS  Article  Google Scholar 

  7. 7

    Olney, J.W., Labruyere, J. & Price, M.T. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 244, 1360–1362 (1989).

    CAS  Article  Google Scholar 

  8. 8

    Fix, A.S. et al. Neuronal vacuolization and necrosis induced by the noncompetitive N-methyl-D-aspartate (NMDA) antagonist MK(+)801 (Dizocilpine maleate): A light and electron microscopic evaluation of the rat retrosplenial cortex. Exp. Neural. 123, 204–215 (1993).

    CAS  Article  Google Scholar 

  9. 9

    Farber, N.B. et al. Age-specific neurotoxicity in the rat associated with NMDA receptor blockade: Potential relevance to schizophrenia? Biol. Psychiatry 38 788–796 (1995).

    CAS  Article  Google Scholar 

  10. 10

    Olney, J.W. et al. NMDA antagonist neurotoxicity: Mechanism and prevention. Science 254, 1515–1518 (1991).

    CAS  Article  Google Scholar 

  11. 11

    Ishimaru, M., Fukamauchi, F. & Olney, J.W. Halothane prevents MK-801 neurotoxicity in the rat cingulate cortex. Neurosci. Lett. 193, 1–4 (1995).

    CAS  Article  Google Scholar 

  12. 12

    Jevtovic-Todorovic, V., Kirby, C.O. & Olney, J.W. Isoflurane and propofol block neurotoxicity caused by MK-801 in the rat posterior cingulate/retrosplenial cortex. J. Cereb. Blood Flow and Met. 17, 168–174 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Stevens, R.K. & Scheller, M. Anesthesia as a Speciality: Past, Present and Future. In Clinical Anesthesia, Barash PG et al., Ed. (Philadelphia, JB Lippincott), pp. 6 (1992).

    Google Scholar 

  14. 14

    Little, H.J. & Thomas, D.L. The effects of anaesthetics and high pressure on the responses of the rat superior cervical ganglion in vitro. J. Physiol. 374, 387–399 (1986).

    CAS  Article  Google Scholar 

  15. 15

    Koblin, D.D., Deady, J.E., Nelson, N.T., Eger, E.I. & Bainton, C.R. Mice tolerant to nitrous oxide are not tolerant to barbiturates. Anesth. Analg. 60, 138–141 (1981).

    CAS  PubMed  Google Scholar 

  16. 16

    Olney, J.W. & Price, M.T. Excitotoxic amino acids as neuroendocrine research tools. In: Neuroendocrine Peptide Methodology, P. Michael Conn, (Ed.) (San Diego, California: Academic Press), pp.891-905 (1989).

    Google Scholar 

  17. 17

    Wong, E.H. et al. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc. Natl. Acad. Sci. U.S.A. 83, 7104–7108 (1986).

    CAS  Article  Google Scholar 

  18. 18

    Olney, J.W., Price, M.T., Shahid Salles, K., Labruyere, J. & Frierdich, G. MK-801 powerfully protects against N-methyl aspartate neurotoxicity.Eur. J. Pharmacol. 141, 357–361 (1987).

    CAS  Article  Google Scholar 

  19. 19

    Mennerick, S., Que, J., Benz, A., A. & Zorumski, C.F. Passive and synaptic properties of hippocampal neurons grown in microcultures and in mass cultures. J. Neurophysiology 73, 320–332 (1995).

    CAS  Article  Google Scholar 

  20. 20

    Stevens, W.C. & Kingston, H.C.G., Inhalation Anesthesia In Clinical Anesthesia Barash P.G. et al., (Ed.) (Philadelphia, JB Lippincott), 439–465 (1992).

    Google Scholar 

  21. 21

    Fragen, R.J. & Avram, M.J., Nonopioid Intravenous AnestheTics. Clinical Anesthesia, Barash, P.G. et al. (Eds.) (Philadelphia: JB Lippincott), 385–412 (1992).

    Google Scholar 

  22. 22

    Hornbein, T.F. et al. The minimum alveolar concentration of nitrous oxide in man. Anest. Analg. 61, 553–556 (1982).

    CAS  Article  Google Scholar 

  23. 23

    Gonsowski, C.T. & Eger II, E.I. Nitrous oxide minimum alveolar anesthetic concentration in rats is greater than previously reported. Anesth. Analg. 79, 710–712 (1994).

    CAS  Article  Google Scholar 

  24. 24

    Mahmoudi, N.W., Cole, D.J. & Shapiro, H.M. Insufficient anesthetic potency of nitrous oxide in the rat. Anesthesiology 70, 345 (1989).

    CAS  Article  Google Scholar 

  25. 25

    Dohm, C.S. et al. Reinforcing effects of extended inhalation of nitrous oxide in humans. Drug Alcohol Depend. 31, 265–280 (1993).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jevtović-Todorović, V., Todorovć, S., Mennerick, S. et al. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med 4, 460–463 (1998). https://doi.org/10.1038/nm0498-460

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing