Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The maintenance of strain structure in populations of recombining infectious agents

Abstract

Using mathematical models that combine population genetic and epidemiological processes, we resolve the paradox that many important pathogens appear to persist as discrete strains despite the constant exchange of genetic material. We show that dominant polymorphic determinants (that is, those that elicit the most effective immune responses) will be organized into nonoverlapping combinations as a result of selection by the host immune system, thereby defining a set of discrete independently transmitted strains. By analysing 222 isolates of Neisseria meningitidis, we show that two highly polymorphic epitopes of the outer membrane protein PorA exist in nonoverlapping combinations as predicted by this general framework. The model indicates that dominant polymorphic determinants will be in linkage disequilibrium, despite frequent genetic exchange, even though they may be encoded by several unlinked genes. This suggests that the detection of nonrandom associations between epitope regions can be employed as a novel strategem for identifying dominant polymorphic antigens.

References

  1. 1

    Gupta, S., Trenholme, K., Anderson, R.M. & Day, K.P. Antigenic diversity and the transmission dynamics of Plasmodium faldparum. Science 263, 961–963 (1994).

    CAS  Article  Google Scholar 

  2. 2

    Louwagie, J. et al. Phylogenetic analysis of gag genes from 70 international HIV-1 isolates provides evidence for multiple genotypes. AIDS 7, 769–780 (1993).

    CAS  Article  Google Scholar 

  3. 3

    Maynard Smith, J., Dowson, C.G. & Spratt, B.C. Localized sex in bacteria. Nature 349, 29–31 (1991)

    Article  Google Scholar 

  4. 4

    Walliker, D. Genetic recombination in malaria parasites. Exp. Parasitol. 69, 303–309 (1989).

    CAS  Article  Google Scholar 

  5. 5

    Robertson, D.L., Sharp, P.M., McCutchan, F.E. & Hahn, B.H. Recombination in HIV-1. Nature 374, 124–126 (1995).

    CAS  Article  Google Scholar 

  6. 6

    Feavers, I.M., Heath, A.B., Bygraves, J.A. & Maiden, M.C.J. Role of horizontal genetic exchange in the antigenic variation of the class 1 outer membrane protein of Neisseria meningitidis. Mol Microbiol. 6, 489–495 (1992)

    CAS  Article  Google Scholar 

  7. 7

    Desjardins, P., Picard, B., Kaltenbock, B., Elion, J. & Denamur, E. Sex in Escherichia coli does not disrupt the clonal structure of the population: Evidence from random amplified polymorphic DNA and restriction-fragment-length polymorphism. J. Mol Evol. 41, 440–448 (1995).

    CAS  Article  Google Scholar 

  8. 8

    Levin, B. Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. Genetics 99, 1–23 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Hartl, D. & Clark, A.G. Principles of Population Genetics (Sinauer Associates, Sunderland, Massachusetts, 1989).

    Google Scholar 

  10. 10

    Anderson, R.M. & May, R.M. Infectious Diseases of Humans: Dynamics & Control (Oxford Univ. Press, Oxford, 1991).

    Google Scholar 

  11. 11

    Feavers, I.M. et al. Antigenic diversity of meningococcal outer membrane protein PorA has implications for epidemiological analysis and vaccine design Clin. Diagn. Lab. Immunol (in the press).

  12. 12

    Suker, J. et al. The porA gene in serogroup A meningococci: Evolutionary stability and mechanism of genetic variation. Mol. Microbiol 12, 253–265 (1994).

    CAS  Article  Google Scholar 

  13. 13

    Maiden, M.C.J. Population genetics of a transformable bacterium: The influence of horizontal genetic exchange on the biology of Neisseria meningitidis. FEMS Microbiol.Lett. 112, 243–250 (1993).

    CAS  Article  Google Scholar 

  14. 14

    Maiden, M.C.J. & Feavers, I.M. Population genetics and global epidemiology of the human pathogen Neisseria meningitidis. in Population Genetics of Bacteria (eds. Baumberg, S., Young, J.P.W., Saunders, J.R. & Wellington, E.M.H.) 269–293 (Cambridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  15. 15

    Maynard Smith, J.M., Smith, N.H., O'Rourke, M. & Spratt, B.G. How clonal are bacteria? Proc. Natl. Acad. Scl USA 90, 4384–4388 (1993).

    Article  Google Scholar 

  16. 16

    Spratt, B.G., Smith, N.H., Zhou, J., O'Rourke, M. & Feil, E. The population genetics of the pathogenic Neisseria. in Population Genetics of Bacteria (eds. Baumberg, S., Young, J.P.W., Saunders, J.R. & Wellington, E.M.H.) 143 (Cambridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  17. 17

    Cartwright, K.A.V., Stuart, J.M., Jones, D.M. & Noah, N.D. The Stonehouse survey: Nasopharyngeal carriage of meningococci and Neisseria lactamica. Epidemiol Infect 99, 591–601 (1987).

    CAS  Article  Google Scholar 

  18. 18

    Craven, D.E. et al. Adherence of isolates of Neisseria meningitidis from patients and carriers to human buccal epithelial cells. J. Infect Dis. 142, 556–568 (1980).

    CAS  Article  Google Scholar 

  19. 19

    Maiden, M.C.J., Suker, J., McKenna, A.J., Bygraves, J.A. & Feavers, I.M. Comparison of the class 1 outer membrane proteins of eight serological reference strains of Neisseria meningitidis. Mol. Microbiol. 5, 727–736 (1991).

    CAS  Article  Google Scholar 

  20. 20

    Mandrell, R.E. & Zollinger, W.D. Human immune response to meningococcal outer membrane protein epitopes after natural infection or vaccination. Infect Immun. 57, 1590–1598 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Wiertz, E.J. et al. T cell recognition of Neisseria meningitidis class 1 outer membrane proteins. Identification of T cell epitopes with selected synthetic peptides and determination of HLA restriction elements. J. Immunol. 147, 2012–2018 (1991).

    CAS  PubMed  Google Scholar 

  22. 22

    Hughes, A.L. Positive selection and interallelic recombination at the merozoite surface antigen-1 (MSA-1) locus of Plasmodium faldparum. Mol. Biol. Evol. 9, 381–393 (1992).

    CAS  PubMed  Google Scholar 

  23. 23

    Gupta, S. & Day, K.P. A strain theory of malarial transmission. Parasitol. Today 10, 476–481 (1994).

    CAS  Google Scholar 

  24. 24

    Roberts, D.J. et al. Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 357, 689–692 (1992).

    CAS  Article  Google Scholar 

  25. 25

    Tibayrenc, M. Antigenic diversity and the transmission dynamics of Plasmodium falciparum: The clonality/sexuality debate revisited. Parasitol Today 10, 456–457 (1994).

    CAS  Google Scholar 

  26. 26

    Baruch, D.I. et al. Cloning the P. faldparum gene encoding PfEMPl, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82, 77–87 (1995).

    CAS  Article  Google Scholar 

  27. 27

    Su, X-z. et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium faldparum-intected erythrocytes. Cell 82, 89–100 (1995).

    CAS  Article  Google Scholar 

  28. 28

    Smith, J.D. et al. Switches in expression of Plasmodium faldparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82, 101–110 (1995).

    CAS  Article  Google Scholar 

  29. 29

    Hayes, L.J. et al. Extent and kinetics of genetic change in the ompl gene of Chlamydia trachomatis in two villages with endemic trachoma. J. Infect Dis. 172, 268–272 (1995).

    CAS  Article  Google Scholar 

  30. 30

    Gupta, S. & Day, K.P. A theoretical framework for the immunoepidemiology of Plasmodium faldparum malaria. Parasite Immunol 16, 361–370 (1994).

    CAS  Article  Google Scholar 

  31. 31

    Daly, T.M. & Long, C.A. A recombinant 15-kilodalton carboxyl-terminal fragment of Plasmodium yoelii yoelii 17XL merozoite surface protein 1 induces a protective immune response in mice. Infect. Immun. 61, 2462–2467 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Hoffman, S. et al. Naturally acquired antibodies to sporozoites do not prevent malaria: Vaccine development implications. Science 237, 639–642 (1987).

    CAS  Article  Google Scholar 

  33. 33

    Jones, T.R., Ballou, W.R. & Hoffman, S.L. Antibodies to the circumsporozoite protein and protective immunity to malaria sporozoites. Prog. Clin. Parasitol. 3, 103–117 (1993).

    CAS  Article  Google Scholar 

  34. 34

    Hill, A.V.S. et al. Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 360, 434–439 (1992).

    CAS  Article  Google Scholar 

  35. 35

    Gupta, S., Swinton, J. & Anderson, R.M. Theoretical studies of the effects of genetic heterogeneity in the parasite population on the transmission dynamics of malaria. Proc. R. Soc. Series B 256, 231–238 (1994).

    CAS  Article  Google Scholar 

  36. 36

    Gotschlich, E.C., Goldschneider, I. & Artenstein, M.S. Human immunity to the meningococcus. IV. Immunogenicity of group A and group C meningococcal polysaccharides in human volunteers. J. Exp. Med. 129, 1367–1384 (1969).

    CAS  Article  Google Scholar 

  37. 37

    Wyle, F.A. et al. Immunologic response of man to group B meningococcal polysac-charide vaccines. J. Infect. Dis. 126, 514–521 (1972).

    CAS  Article  Google Scholar 

  38. 38

    Carman, W.F., Thomas, H.C., Zuckerman, A.J. & Harrison, T. Hepatitis B virus: Molecular variants. in Viral Hepatitis (eds. Zuckerman, A.J. & Thomas, H.C.) 115–136 (Churchill Livingstone, Edinburgh, 1993)

    Google Scholar 

  39. 39

    Norder, H. et al. Genetic relatedness of hepatitis B viral strains of diverse geographical origin and natural variations in the primary structure of the surface antigen. J. Gen. Virol. 74, 1341–1348 (1993).

    CAS  Article  Google Scholar 

  40. 40

    Bollyky, P.L., Rambaut, A., Harvey, P.H. & Holmes, E.C. Recombination between sequences of Hepatitis B Virus from different genotypes. J. Mol Evol (in the press).

  41. 41

    Tibayrenc, M., Kjellberg, F. & Ayala, F.J. A clonal theory of parasitic protozoa: The population structures of Entamoeba, Giardia, Leishmania, Naegleriaf Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences Proc. Natl Acad. Scl USA 87, 2414–2418 (1990).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gupta, S., Maiden, M., Feavers, I. et al. The maintenance of strain structure in populations of recombining infectious agents. Nat Med 2, 437–442 (1996). https://doi.org/10.1038/nm0496-437

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing