Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Relative resistance to HIV–1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high–risk sexual exposures

Abstract

Some individuals remain uninfected with human immunodeficiency virus type–1 (HIV–1) despite multiple high–risk sexual exposures. We studied a cohort of 25 subjects with histories of multiple high–risk sexual exposures to HIV–1 and found that their CD8+ lymphocytes had greater anti–HIV–1 activity than did CD8+; lymphocytes from nonexposed controls. Further studies indicated that their purified CD4+; lymphocytes were less susceptible to infection with multiple primary isolates of HIV–1 than were CD4+; lymphocytes from the nonexposed controls. This relative resistance to HIV–1 infection did not extend to T–cell line–adapted strains, was restricted by the envelope glycoprotein, was not explained by the cell surface density of CD4 molecules, but was associated with the activity of the C–C chemokines RANTES, MIP–1α, and MIP–1β. This relative resistance of CD4+; lymphocytes may contribute to protection from HIV–1 in multiply exposed persons.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Detels, R. et al. Resistance to HIV-1 infection. J. Acquir. Immun. Defic. Syndr. 7, 1263–1269 (1994).

    CAS  Article  Google Scholar 

  2. DeGruttola, V., Seage, G.R., Mayer, K.H. & Horsburgh, C.R. Infectiousness of HIV between male homosexual partners. J. Clin. Epidemiol. 42, 849–856 (1989).

    CAS  Article  PubMed  Google Scholar 

  3. Prevots, D.R., Ancelle-Park, R.A., Neal, J.J. & Remis, R.S. The epidemiology of heterosexually acquired HIV infection and AIDS in Western industrialized countries. AIDS 8; S109–S117 (1994).

    Google Scholar 

  4. Taylor, R. Quiet clues to HIV-1 immunity: Do some people resist infection? J. NIH Res. 6, 29–31 (1994).

    Google Scholar 

  5. Kaslow, R.A. et al. A1, Cw7, B8, DR3 HLA antigen combination associated with rapid decline of T-helper lymphocytes in HIV-1 infection: A report from the Multicenter AIDS Cohort Study. Lancet 335, 927–930 (1990).

    CAS  Article  PubMed  Google Scholar 

  6. Steel, C.M. et al. HLA haplotype A1 B8 DR3 as a risk factor for HIV-related disease. Lancet 1, 1185–1188 (1988).

    CAS  Article  PubMed  Google Scholar 

  7. Kilpatrick, D.C., Hague, R.A., Yap, P.L. & Mok, J.Y. HLA antigen frequencies in children born to HIV-infected mothers. Dis. Markers 9, 21–26 (1991).

    CAS  PubMed  Google Scholar 

  8. Just, J. et al. Genetic risk factors for perinatally acquired HIV-1 infection. Paediatr. Perinat. Epidemiol. 6, 215–224 (1992).

    CAS  Article  PubMed  Google Scholar 

  9. Klein, M.R. et al. Associations between HLA frequencies and pathogenic features of human immunodeficiency virus type 1 infection in seroconverters from Amsterdam cohort of homosexual men. J. Infect. Dis. 169, 1244–1249 (1994).

    CAS  Article  PubMed  Google Scholar 

  10. Wainberg, M.A., Blain, N. & Fitz-Gibbon, L. Differential susceptibility of human lymphocyte cultures to infection by HIV. Clin. Exp. Immunol. 1987, 136–142 (1987).

    Google Scholar 

  11. Cloyd, M.W. & Moore, B.E. Spectrum of biological properties of human immunodeficiency virus (HIV-1) isolates. Virology 174, 103–116 (1990).

    CAS  Article  PubMed  Google Scholar 

  12. Williams, L.M. & Cloyd, M.W. Polymorphic human gene(s) determines differential susceptibility of CD4 lymphocytes to infection by certain HIV-1 isolates. Virology 184, 723–728 (1991).

    CAS  Article  PubMed  Google Scholar 

  13. Spira, A. & Ho, D.D. Effect of different donor cells on human immunodeficiency virus type 1 replication and selection in vitro. J. Virol. 69, 422–429 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ometto, L. et al. Viral phenotype and host-cell susceptibility to HIV-1 infection as risk factors for mother-to-child HIV-1 transmission. AIDS 9, 427–434 (1995).

    CAS  Article  PubMed  Google Scholar 

  15. Lederman, M.M. et al. Human immunodeficiency virus (HIV) type 1 infection status and in vitro susceptibility to HIV infection among high-risk HIV-1-seronegative hemophiliacs. J. Infect. Dis. 172, 228–231 (1995).

    CAS  Article  PubMed  Google Scholar 

  16. Roos, M.T.L. et al. Viral phenotype and immune response in primary human immunodeficiency virus type 1 infection. J. Infect. Dis. 165, 427–432 (1992).

    CAS  Article  PubMed  Google Scholar 

  17. Zhu, T. et al. Genotypic and phenotypic characterization of HIV-1 in patients with primary infection. Science 261, 1179–1181 (1993).

    CAS  Article  PubMed  Google Scholar 

  18. Rowland-Jones, S.L. et al. HIV-specific cytotoxic T-cell activity in an HlV-exposed but uninfected infant. Lancet 341, 860–861 (1993).

    CAS  Article  PubMed  Google Scholar 

  19. Langlade-Demoyen, P., Ngo-Giang-Huong, N., Ferchal, F. & Oksenhendler, E. Human immunodeficiency virus (HIV) nef-specific cytotoxic T lymphocytes in noninfected heterosexual contacts of HIV-infected patients. J. Clin. Invest. 93, 1293–1297 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Rowland-Jones, S. et al. HIV-specific cytotoxic T-cells in HIV-exposed but uninfected Gambian women. Nature Med. 1, 59–64 (1995).

    Article  PubMed  Google Scholar 

  21. Clerici, M. et al. Cell-mediated immune response to human immunodeficiency virus (HIV) type-1 in seronegative homosexual men with recent sexual exposure to HIV-1. J. Infect. Dis. 165, 1012–1019 (1992).

    CAS  Article  PubMed  Google Scholar 

  22. Mackewicz, C. & Levy, J.A. CD8+; cell anti-HIV activity: Nonlytic suppression of virus replication. AIDS Res. Hum. Retrovir. 8, 1039–1050 (1992).

    CAS  Article  PubMed  Google Scholar 

  23. Whetsell, A.J. et al. Comparison of three nonradioisotopic polymerase chain reaction-based methods for detection of human immunodeficiency virus type 1. J. Clin. Microbiol. 30, 845–853 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Harrowe, G. & Cheng-Mayer, C. Amino acid substitutions in the V3 loop are responsible for adaptation to growth in transformed T-cell lines of a primary human immunodeficiency virus type 1. Virology 210, 490–494 (1995).

    CAS  Article  PubMed  Google Scholar 

  25. Kabat, D., Kozak, S.L., Wehrly, K. & Chesebro, B. Differences in CD4 dependence for infectivity of laboratory-adapted and primary patient isolates of human immunodeficiency virus type 1. J. Virol. 68, 2570–2577 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Brand, D., Srinivasan, K. & Sodroski, J. Determinants of human immunodeficiency virus type 1 entry in the CDR2 loop of the CD4 glycoprotein. J. Virol. 69, 166–171 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cocchi, F. et al. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+; T cells. Science 270, 1811–1815 (1995).

    CAS  Article  PubMed  Google Scholar 

  28. O'Brien, T.R. et al. Heterosexual transmission of human immunodeficiency virus type 1 from transfusion recipients to their sex partners. J. Acquir. Immune Defic. Syndr. 7, 705–710 (1994).

    CAS  PubMed  Google Scholar 

  29. Maggi, E. et al. Ability of HIV to promote a TH1 to TH0 shift and to replicate preferentially in TH2 and TH0 cells. Science 265, 244–248 (1994).

    CAS  Article  PubMed  Google Scholar 

  30. Vyakaram, A., Matear, P.M., Martin, S.J. & Wagstaff, M. Th1 cells specific for HIV-1 gag p24 are less efficient than Th0 cells in supporting HIV replication, and inhibit virus replication in Th0 cells. Immunology 86, 85–96 (1995).

    Google Scholar 

  31. Hodge, T.W., Sasso, D.R. & McDougal, J.S. Humans with OKT4-epitope deficiency have a single nucleotide base change in the CD4 gene, resulting in substitution of TRP240 for ARG240. Hum. Immunol. 30, 99–104 (1991).

    CAS  Article  PubMed  Google Scholar 

  32. Ghabanbasani, M.Z. et al. Possible association of CD3 and CD4 polymorphisms with insulin-dependent diabetes mellitus (IDDM). Clin. Exp. Immunol. 97, 517–521 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Callebaut, C., Krust, B., Jacotot, E. & Hovanessian, A.G. T cell activation antigen, CD26, as a cofactor for entry of HIV in CD4+; cells. Science 262, 2045–2050 (1993).

    CAS  Article  PubMed  Google Scholar 

  34. Bhat, S., Spitalnik, S.L., Gonzalez-Scarano, F. & Silberberg, D.H. Galactosyl ceramide or a derivative is an essential component of the neural receptor for human immunodeficiency virus type 1 envelope glycoprotein gp120. Proc. Natl. Acad. Sci. USA 88, 7131–7134 (1991).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Patel, M. et al. Cell-surface heparan sulfate proteoglycan mediates HIV-1 infection of T-cell lines. AIDS Res. Hum. Retrovir. 9, 167–174 (1993).

    CAS  Article  PubMed  Google Scholar 

  36. Roderiquez, G. et al. Mediation of human immunodeficiency virus type 1 binding by interaction of cell surface heparan sulfate proteoglycans with the V3 region of envelope gp120-gp41. J. Virol. 69, 2233–2239 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Stefano, K.A. et al. Replication of a macrophage-tropic strain of human immunodeficiency virus type 1 (HIV-1) in a hybrid cell line, CEMxl74, suggests that cellular accessory molecules are required for HIV-1 entry. J. Virol. 67, 6707–6715 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mori, K., Ringler, D.J. & Desrosiers, R.C. Restricted replication of simian immunodeficiency virus strain 239 in macrophages is determined by env but is not due to restricted entry. J. Virol. 67, 2807–2814 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Spira, A.I. et al. Cellular targets of infection and route of viral dissemination following an intravaginal inoculation of SIV into rhesus macaques. J. Exp. Med. 183, 215–225 (1996).

    CAS  Article  PubMed  Google Scholar 

  40. Cao, Y., Qing, L., Zhang, L.Q., Safrit, J.T. & Ho, D.D. Virological and immunological characterization of long-term survivors of HIV-1 infection. N. Engl. J. Med. 332, 201–208 (1994).

    Article  Google Scholar 

  41. Schrager, L.K., Young, J.M., Fowler, M.G., Mathieson, B.J. & Vermund, S.H. Long-term survivors of HIV-1 infection: Definitions and research challenges. AIDS 8, S95–S108 (1994).

    Google Scholar 

  42. Connor, R.I., Mohri, H., Cao, Y. & Ho, D.D. Increased viral burden and cytopathicity correlate temporally with CD4+; T-lymphocyte decline and clinical progression in HIV-1 infected individuals. J. Virol. 67, 1772–1778 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Adachi, A. et al. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J. Virol. 59, 284–291 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Koyanagi, Y. et al. Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science 236, 819–822 (1987).

    CAS  Article  PubMed  Google Scholar 

  45. Koup, R.A. et al. Temporal association of cellular immune responses with the initial control of viremia in primary HIV-1 syndrome. J. Virol. 68, 4650–4655 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Moore, J.P. et al. Exploration of antigenic variation in gp120 from clades A through F of human immunodeficiency virus type 1 by using monoclonal antibodies. J. Virol. 68, 8350–8364 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Reed, L.J. & Muench, H. A simple method of estimating 50 percent endpoints. Am. J. Hyg. 27, 493–499 (1938).

    Google Scholar 

  48. Koup, R.A. & Ho, D.D. Quantitative culture assay for HIV-1 in peripheral blood. in Techniques in HIV Research (eds Aldovini, A. & Walker, B.D.) 107–112 (Stockton, New York, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Paxton, W., Martin, S., Tse, D. et al. Relative resistance to HIV–1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high–risk sexual exposures. Nat Med 2, 412–417 (1996). https://doi.org/10.1038/nm0496-412

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0496-412

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing