Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Pathogens & strain diversity: Is sex disruptive?

A mathematical model is used to suggest why strain diversity of pathogenic microorganisms persists in the face of constant opportunities for recombination (pages 437–442).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Gupta, S. et al. The maintenance of strain structure in populations of recombining infectious agents. Nature Med. 2, 437–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Hastabacka, J. et al. The diastrophic dysplasia gene encodes a novel sulfate transporter: Positional cloning by fine-structure linkage disequilibrium mapping. Cell 78, 1073–1087 (1994).

    Article  Google Scholar 

  3. Maynard Smith, J. Estimating the minimum rate of genetic transformation in bacteria. J. Evol. Biol 7, 525–534 (1994).

    Article  Google Scholar 

  4. Hudson, R.R. Analytical results concerning linkage disequilibrium in models with genetic transformation and conjugation. J. Evol. Biol. 7, 535–548 (1994).

    Article  Google Scholar 

  5. Maynard Smith, J.M., Smith, N.H., O'Rourke, M. & Spratt, E.G. How clonal are bacteria? Proc. Natl. Acad. Sci. USA 90, 4384–4388 (1993).

    Article  Google Scholar 

  6. Peterson, A.C. et al. The distribution of linkage disequilibrium over anonymous genome regions. Hum. Mol. Genet. 4, 887–894 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Fleischmann, R.D. et al. Whole-genome region random sequencing and assembly of Haemophilus influenzae. Science 269, 496–512 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. De Bruin, D., Lanzer, M. & Ravetch, J.V. The polymorphic subtelomeric regions of Plasmodium falciparum chromosomes contain arrays of repetitive sequence elements. Proc. Natl. Acad. Sci. USA 91, 619–623 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peterson, S.N. et al. Characterization of repetitive DNA in the Mycoplasma genitalium genome: Possible role in the generation of antigenic variation. Proc. Natl Acad. Sci. USA 92, 11829–11833 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moxon, E.R., Rainey, P.B., Nowak, M.A. & Lenski, R.E. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4, 24–33 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Fraser, C.M. et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Luria, S.E. & Delbruck, M. Mutations from bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Malo, D. et al. Haplotype mapping and sequence analysis of the mouse Nramp gene predicts susceptibility to infection with intracellular parasites. Genomics 23, 51–61 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freimer, N., Blower, S. & Slatkin, M. Pathogens & strain diversity: Is sex disruptive?. Nat Med 2, 401–403 (1996). https://doi.org/10.1038/nm0496-401

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0496-401

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing