Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tau protein directly interacts with the amyloid β-protein precursor: Implications for Alzheimer's disease

Abstract

The simultaneous presence of intracellular neurofibrillary tangles (NFT) and extracellular senile plaques in Alzheimer's disease (AD) suggests that the two lesions could be synergistically interrelated. However, although the main protein components of NFT and senile plaques, τ (tau) and amyloid β-protein, respectively, are well characterized, the molecular mechanisms responsible for their deposition in lesions are unknown. We demonstrate, using four independent techniques, that τ directly interacts with a conformation-dependent domain of the amyloid β-protein precursor (βPP) encompassing residues βPP714–723. The putative τ–binding domain includes βPP717 mutation sites that are associated with familial forms of AD. Our findings strongly suggest that NFT and senile plaques, often thought of as independent structures, may play a role in each other's formation during the pathogenesis of AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Alzheimer, A. ¨ber eine eigenartige Erkrankung der Hirnrinde. Zentralbl. Ger. Neural. Psychiat. 18, 177–179 (1907).

    Google Scholar 

  2. Grundke-Iqbal, I. et al. Abnormal phosphorylation of the microtubule-associated protein τ in Alzheimer cytoskeletal pathology. Proc. natn. Acad. Sci. U.S.A. 83, 4913–4917 (1986).

    Article  CAS  Google Scholar 

  3. Masters, C.L. et al. Amyloid plaque protein in Alzheimer disease and Down syndrome. Proc. natn. Acad. Sci. U.S.A. 82, 4245–4249 (1985).

    Article  CAS  Google Scholar 

  4. Perry, G. Neuritic plaques in Alzheimer disease originate from neurofibrillary tangles. Med. Hypotheses. 40, 257–258 (1993).

    Article  CAS  Google Scholar 

  5. Perry, G., Brinkley, B.R. & Bryan, J. Interaction of calcium-calmodulin in microtubule assembly in vitro . in Muscle and Cell Motility (eds. Dowben, R.M. & Shay, J.W.), 73–84 Vol 2 (Plenum Press, New York, 1982).

    Chapter  Google Scholar 

  6. Davies, L. et al. A4 amyloid protein deposition and the diagnosis of Alzheimer's disease. Neurology 38, 1688–1693 (1988).

    Article  CAS  Google Scholar 

  7. Kim, K.S. et al. Production and characterization of monoclonal antibodies reactive to synthetic cerebrovascular amyloid peptide. Neurosci. Res. Commun. 2, 121–130 (1988).

    CAS  Google Scholar 

  8. Cras, P. et al. Neuronal and microglial involvement in β-amyloid deposition in Alzheimer disease. Am. J. Pathol. 137, 241–246 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Shoji, M. et al. Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science. 258, 126–129 (1992).

    Article  CAS  Google Scholar 

  10. Perry, G. et al. Amyloid precursor protein in senile plaques of Alzheimer disease. Lancet ii, 746 (1988).

    Article  Google Scholar 

  11. Roher, A.E., Palmer, K.C., Yurewicz, E.C., Ball, M.J. & Greenberg, B.D. Morphological and biochemical analyses of amyloid plaque core proteins purified from Alzheimer disease tissue. J. Neurochem. 61, 1916–1926 (1993).

    Article  CAS  Google Scholar 

  12. Ellisman, M. et al. Neuronal fibrillar cytoskeletal and endomembrane system organization in Alzheimer's disease. Alterations in the Neuronal Cytoskeleton in Alzheimer Disease (ed. Perry, G.), 61–73 (Plenum Press, New York, 1987).

    Chapter  Google Scholar 

  13. Maggio, J.E. et al. Reversible in vitro growth of Alzheimer disease beta-amyloid plaques by deposition of labelled amyloid peptide. Proc. natn. Acad. Sci. U.S.A. 89, 5462–5466 (1992).

    Article  CAS  Google Scholar 

  14. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    Article  CAS  Google Scholar 

  15. Kang, J. et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736 (1987).

    Article  CAS  Google Scholar 

  16. Smith, M.A. et al. Advanced Maillard reaction products are associated with Alzheimer disease pathology. Proc. natn. Acad. Sci. U.S.A. 91, 5710–5714 (1994).

    Article  CAS  Google Scholar 

  17. Perry, G. et al. Immunocytochemical evidence that the β-protein precursor is an integral component of neurofibrillary tangles. Am. J. Pathol. 143, 1586–1593 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Autilio-Gambetti, L. et al. The amyloid precursor protein of Alzheimer disease is expressed as a 130kDa polypeptide in various cultured cell types. FEBS Lett. 241, 94–98 (1988).

    Article  CAS  Google Scholar 

  19. Refolo, L.M., Wittenberg, I.S., Friedrich, V.L. Jr. & Robakis, N.K. Alzheimer amyloid precursor is associated with the detergent-insoluble cytoskeleton. J. Neurosci. 11, 3888–3897 (1991).

    Article  CAS  Google Scholar 

  20. Kawai, M. et al. Degeneration of vascular muscle cells in cerebral amyloid angiopathy of Alzheimer disease. Brain Res. 623, 142–146 (1993).

    Article  CAS  Google Scholar 

  21. Prelli, F., Castano, E., Glenner, G.G. & Frangione, B. Difference between vascular and plaque core amyloid in Alzheimer's disease. J. Neurochem. 51, 648–651 (1988).

    Article  CAS  Google Scholar 

  22. Golde, T.E., Estus, S., Younkin, L.H., Selkoe, D.J. & Younkin, S.G. Processing of the amyloid precursor protein to potentially amyloidogenic derivatives. Science 255, 728–730 (1992).

    Article  CAS  Google Scholar 

  23. Fraser, P.E., Nguyen, J.T., McLachlan, D.R., Abraham, C.R. & Kirschner, D.A. Alpha-1-antichymotrypsin binding to Alzheimer Aβ peptides is sequence specific and induces fibril disaggregation in vitro . J. Neurochem. 61, 298–305 (1993).

    Article  CAS  Google Scholar 

  24. Kalaria, R.N., Galloway, P.G. & Perry, G. Widespread serum amyloid P immunoreactivity in cortical amyloid deposits and the neurofibrillary pathology of Alzheimer's disease and other degenerative disorders. Neuropathol. App. Neurobiol. 17, 189–201 (1991).

    Article  CAS  Google Scholar 

  25. Strittmatter, W.J. et al. Binding of human apolipoprotein E to synthetic amyloid beta peptide: Isoform-specific effects and implications for late-onset Alzheimer disease. Proc. natn. Acad. Sci. U.S.A. 90, 8098–8102 (1993).

    Article  CAS  Google Scholar 

  26. Vitek, M.P. et al. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc. natn. Acad. Sci. U.S.A. 91, 4766–4770 (1994).

    Article  CAS  Google Scholar 

  27. Wille, H., Drewes, G., Biernat, J., Mandelkow, E.M. & Mandelkow, E. Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein tau in vitro. J. Cell Biol. 118, 573–584 (1992).

    Article  CAS  Google Scholar 

  28. Caputo, C.B., Sygowski, L.A., Scott, C.W. & Sobel, I.R. Role of tau in the polymerization of peptides from the beta-amyloid precursor protein. Brain Res. 597, 227–232 (1992).

    Article  CAS  Google Scholar 

  29. Connolly, J.A., Kalnins, V.I., Cleveland, D.W. & Kirschner, M.W. Immunofluorescent staining of cytoplasmic and spindle microtubules in mouse fibroblasts with antibody to tau protein. Proc. natn. Acad. Sci. U.S.A. 74, 2437–2440 (1977).

    Article  CAS  Google Scholar 

  30. Selden, S.C. & Pollard, T.D. Phosphorylation of microtubule-associated proteins regulates their interaction with actin filaments. J. biol. Chem. 258, 7064–7071 (1983).

    CAS  Google Scholar 

  31. Miyata, Y., Hoshi, M., Nishida, E., Minami, Y. & Sakai, H. Binding of microtubule-associated protein 2 and tau to the intermediate filament reassembled from neurofilament 70-kDa subunit protein. J. biol. Chem. 261, 13026–13030 (1986).

    CAS  PubMed  Google Scholar 

  32. Shin, R.-W., Bramblett, G.T., Lee, V.M.-Y. & Trojanowski, J.Q. Alzheimer disease A68 proteins injected into rat brain induce co-deposits of β-amyloid, ubiquitin and α1-antichymotrypsin. Proc. natn. Acad. Sci. U.S.A. 90, 6825–6828 (1993).

    Article  CAS  Google Scholar 

  33. Lindwall, G. & Cole, R.D. The purification of tau protein and the occurrence of two phosphorylation states of tau in brain. J. biol. Chem. 259, 12241–12245 (1984).

    CAS  PubMed  Google Scholar 

  34. Lee, V.M.-Y., Balin, B.J., Otvos, L. Jr. & Trojanowski, J.Q. A68: a major sub-unit of paired helical filaments and derivatized forms of normal tau. Science 251, 675–678 (1991).

    Article  CAS  Google Scholar 

  35. Kalaria, R.N., Sromek, S.M., Grahovac, I. & Harik, S.I. Transferin receptors of rat and human brain and cerebral microvessels and their status in Alzheimer's disease. Brain Res. 585, 87–93 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, M., Siedlak, S., Richey, P. et al. Tau protein directly interacts with the amyloid β-protein precursor: Implications for Alzheimer's disease. Nat Med 1, 365–369 (1995). https://doi.org/10.1038/nm0495-365

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0495-365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing