Abstract
In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Inhibition of upper small intestinal mTOR lowers plasma glucose levels by inhibiting glucose production
Nature Communications Open Access 12 February 2019
-
High-fat diet feeding differentially affects the development of inflammation in the central nervous system
Journal of Neuroinflammation Open Access 26 August 2016
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Greenberg, D., Smith, G.P. & Gibbs, J. Am. J. Physiol. 259, R110–R118 (1990).
Matzinger, D. et al. Gut 46, 688–693 (2000).
Badman, M.K. & Flier, J.S. Science 307, 1909–1914 (2005).
Coll, A.P., Farooqi, I.S. & O'Rahilly, S. Cell 129, 251–262 (2007).
Cummings, D.E. & Overduin, J. J. Clin. Invest. 117, 13–23 (2007).
Murphy, K.G. & Bloom, S.R. Nature 444, 854–859 (2006).
Schwartz, G.J. et al. Cell Metab. 8, 281–288 (2008).
Gillum, M.P. et al. Cell 135, 813–824 (2008).
Kirchner, H. et al. Nat. Med. 15, 741–745 (2009).
Tschöp, M., Smiley, D.L. & Heiman, M.L. Nature 407, 908–913 (2000).
Wang, P.Y. et al. Nature 452, 1012–1016 (2008).
Yen, C.L. et al. Nat. Med. 15, 442–446 (2009).
Obici, S., Feng, Z., Arduini, A., Conti, R. & Rossetti, L. Nat. Med. 9, 756–761 (2003).
Kondo, H. et al. Am. J. Physiol. Endocrinol. Metab. 291, E1092–E1099 (2006).
Cheung, G.W., Kokorovic, A., Lam, C.K., Chari, M. & Lam, T.K. Cell Metab. 10, 99–109 (2009).
Saltiel, A.R. & Kahn, C.R. Nature 414, 799–806 (2001).
Cummings, D.E. Int. J. Obes. (Lond.) 33 Suppl 1, S33–S40 (2009).
Rubino, F. Diabetes Care 31 Suppl 2, S290–S296 (2008).
Troy, S. et al. Cell Metab. 8, 201–211 (2008).
Knauf, C. et al. Diabetes 57, 2603–2612 (2008).
Shiuchi, T. et al. Cell Metab. 10, 466–480 (2009).
Lam, C.K., Chari, M. & Lam, T.K. Physiology (Bethesda) 24, 159–170 (2009).
Plum, L., Belgardt, B.F. & Bruning, J.C. J. Clin. Invest. 116, 1761–1766 (2006).
Sandoval, D.A., Obici, S. & Seeley, R.J. Nat. Rev. Drug Discov. 8, 386–398 (2009).
Schwartz, M.W. & Porte, D. Jr . Science 307, 375–379 (2005).
Lam, T.K., Gutierrez-Juarez, R., Pocai, A. & Rossetti, L. Science 309, 943–947 (2005).
Parton, L.E. et al. Nature 449, 228–232 (2007).
Cha, S.H. & Lane, M.D. Biochem. Biophys. Res. Commun. 386, 212–216 (2009).
Lam, C.K., Chari, M., Wang, P.Y. & Lam, T.K. Am. J. Physiol. Endocrinol. Metab. 295, E491–E496 (2008).
Chari, M., Lam, C.K., Wang, P.Y. & Lam, T.K. Diabetes 57, 836–840 (2008).
Boden, G. et al. Diabetes 54, 3458–3465 (2005).
Lam, T.K. et al. Am. J. Physiol. Endocrinol. Metab. 283, E682–E691 (2002).
Samuel, V.T. et al. J. Biol. Chem. 279, 32345–32353 (2004).
Shulman, G.I. J. Clin. Invest. 106, 171–176 (2000).
Benoit, S.C. et al. J. Clin. Invest. 119, 2577–2589 (2009).
Inoue, H. et al. Cell Metab. 3, 267–275 (2006).
Könner, A.C. et al. Cell Metab. 5, 438–449 (2007).
Obici, S., Zhang, B.B., Karkanias, G. & Rossetti, L. Nat. Med. 8, 1376–1382 (2002).
Pocai, A. et al. Nature 434, 1026–1031 (2005).
Light, P.E., Bladen, C., Winkfein, R.J., Walsh, M.P. & French, R.J. Proc. Natl. Acad. Sci. USA 97, 9058–9063 (2000).
Lam, T.K. et al. Nat. Med. 11, 320–327 (2005).
Ross, R. et al. Diabetes 57, 2061–2065 (2008).
Morgan, K., Obici, S. & Rossetti, L. J. Biol. Chem. 279, 31139–31148 (2004).
Pocai, A. et al. J. Clin. Invest. 116, 1081–1091 (2006).
McGarry, J.D., Mannaerts, G.P. & Foster, D.W. J. Clin. Invest. 60, 265–270 (1977).
He, W., Lam, T.K., Obici, S. & Rossetti, L. Nat. Neurosci. 9, 227–233 (2006).
Chakravarthy, M.V. et al. J. Lipid Res. 50, 630–640 (2009).
Hu, Z., Dai, Y., Prentki, M., Chohnan, S. & Lane, M.D. J. Biol. Chem. 280, 39681–39683 (2005).
Sindelar, D.K., Balcom, J.H., Chu, C.A., Neal, D.W. & Cherrington, A.D. Diabetes 45, 1594–1604 (1996).
Edgerton, D.S. et al. J. Clin. Invest. 116, 521–527 (2006).
López, M. et al. Cell Metab. 7, 389–399 (2008).
Minokoshi, Y. et al. Nature 428, 569–574 (2004).
Reed, J.A. et al. Am. J. Physiol. Endocrinol. Metab. 294, E752–E760 (2008).
Huo, L. et al. Cell Metab. 9, 537–547 (2009).
Morton, G.J. et al. Cell Metab. 2, 411–420 (2005).
Buettner, C. et al. Cell Metab. 4, 49–60 (2006).
Pocai, A. et al. Diabetes 54, 3182–3189 (2005).
Kievit, P. et al. Cell Metab. 4, 123–132 (2006).
Asilmaz, E. et al. J. Clin. Invest. 113, 414–424 (2004).
Coppari, R. et al. Cell Metab. 1, 63–72 (2005).
Yadav, V.K. et al. Cell 138, 976–989 (2009).
Cota, D., Proulx, K. & Seeley, R.J. Gastroenterology 132, 2158–2168 (2007).
Caspi, L., Wang, P.Y. & Lam, T.K. Cell Metab. 6, 99–104 (2007).
Kahn, B.B., Alquier, T., Carling, D. & Hardie, D.G. Cell Metab. 1, 15–25 (2005).
Khamzina, L., Veilleux, A., Bergeron, S. & Marette, A. Endocrinology 146, 1473–1481 (2005).
Cota, D. et al. Science 312, 927–930 (2006).
Theander-Carrillo, C. et al. J. Clin. Invest. 116, 1983–1993 (2006).
Koch, L. et al. J. Clin. Invest. 118, 2132–2147 (2008).
Stafford, J.M. et al. Diabetes 57, 1482–1490 (2008).
van den Hoek, A.M. et al. Diabetes 53, 2529–2534 (2004).
Lam, T.K. et al. Nat. Med. 13, 171–180 (2007).
Acknowledgements
Work in the Lam laboratory is supported by grants from the Canadian Institute of Health Research (MOP-82701 and 86554) and the Banting and Best Diabetes Centre, as well as the Early Researcher Award from the Ontario Ministry of Research and Innovation (ER08-05-141). T.K.T.L. holds the John Kitson McIvor (1915-1942) Endowed Chair in Diabetes Research and the Canada Research Chair in Obesity at the Toronto General Research Institute and the University of Toronto.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing financial interests.
Rights and permissions
About this article
Cite this article
Lam, T. Neuronal regulation of homeostasis by nutrient sensing. Nat Med 16, 392–395 (2010). https://doi.org/10.1038/nm0410-392
Issue Date:
DOI: https://doi.org/10.1038/nm0410-392
This article is cited by
-
Stimulation of the hepatoportal nerve plexus with focused ultrasound restores glucose homoeostasis in diabetic mice, rats and swine
Nature Biomedical Engineering (2022)
-
Beta-klotho in type 2 diabetes mellitus: From pathophysiology to therapeutic strategies
Reviews in Endocrine and Metabolic Disorders (2021)
-
Inhibition of upper small intestinal mTOR lowers plasma glucose levels by inhibiting glucose production
Nature Communications (2019)
-
The metabolic role of vagal afferent innervation
Nature Reviews Gastroenterology & Hepatology (2018)
-
Changes in glycemia, insulin and gut hormone responses to a slowly ingested solid low-carbohydrate mixed meal after laparoscopic gastric bypass or band surgery
International Journal of Obesity (2017)