Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

Ultrahigh-resolution ophthalmic optical coherence tomography

An Erratum to this article was published on 01 May 2001

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conventional (top) and ultrahigh-resolution (bottom) in vivo OCT images along the papillomacular axis.
Figure 2: Comparison of an in vivo ultrahigh-resolution OCT image (top) of the normal human macula to a histologic micrograph of the normal macula (bottom) taken from an ophthalmic textbook26.
Figure 3: Quantification of intraretinal structures.
Figure 4: In vivo ultrahigh-resolution corneal OCT image of a normal human subject.
Figure 5: Ultrahigh-resolution ophthalmologic OCT system using a titanium:sapphire laser light source.

References

  1. Bamber, J.C. & Tristam, M. Diagnostic Ultrasound. in The Physics of Medical Imaging. (ed. Webb, S.) 319–388 (Adam Hilger, Bristol and Philadelphia, 1988).

    Google Scholar 

  2. Pavlin, C.J., McWhae, J.A., McGowan, H.D. & Foster, F.S. Ultrasound biomicroscopy of anterior segment tumors. Ophthalmology 99, 1220–1228 (1992).

    Article  CAS  Google Scholar 

  3. Masters, B.R. & Thaer, A.A. Real-time scanning slit confocal microscopy of the in vivo human cornea. Appl. Opt. 33, 695–701 (1994).

    Article  CAS  Google Scholar 

  4. Webb, R.H., Hughes, G.W. & Pomerantzeff, O. Flying spot TV ophthalmoscope. Appl. Opt. 19, 2991–2997 (1980).

    Article  CAS  Google Scholar 

  5. Bille, J.F., Dreher, A.W. & Zinser, G. Scanning laser tomography of the living human eye. in Noninvasive Diagnostic Techniques in Ophthalmology. (ed. Master, B.R.) 528–547 (Springer Verlag, New York, 1990).

    Chapter  Google Scholar 

  6. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    Article  CAS  Google Scholar 

  7. Puliafito, C.A., Hee, M.R., Schuman, J.S. & Fujimoto, J.G. in Optical Coherence Tomography of Ocular Disease. (Slack, Thorofare, New Jersey, 1995).

    Google Scholar 

  8. Youngquist, R.C., Carr, S. & Davies, D.E.N. Optical coherence domain reflectometry: A new optical evaluation technique. Opt. Lett. 12, 158–160 (1987).

    Article  CAS  Google Scholar 

  9. Takada, K., Yokohama, I., Chida, K. & Noda, J. New measurement system for fault location in optic waveguide devices based on an interferometric technique. App. Opt. 26, 1603–1606 (1987).

    Article  CAS  Google Scholar 

  10. Fercher, A.F., Hitzenberger, C.K., Drexler, W., Kamp, G. & Sattmann, H. In vivo optical coherence tomography. Am. J. Ophthalmol. 116, 113–114 (1993).

    Article  CAS  Google Scholar 

  11. Swanson, E.A. et al. In vivo retinal imaging by optical coherence tomography. Opt. Lett. 18, 1864–1866 (1993).

    Article  CAS  Google Scholar 

  12. Fujimoto, J.G. et al. Optical biopsy and imaging using optical coherence tomography. Nature Med. 1, 970–972 (1995).

    Article  CAS  Google Scholar 

  13. Boppart, S.A. et al. In vivo cellular optical coherence tomography imaging. Nature Med. 4, 861–865 (1998).

    Article  CAS  Google Scholar 

  14. Tearney, G.J. et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039 (1997).

    Article  CAS  Google Scholar 

  15. Fujimoto, J.G., Pitris, C., Boppart, S. & Brezinski, M. Optical coherence tomography, an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2, 9–25 (2000).

    Article  CAS  Google Scholar 

  16. Hee, M.R. et al. Optical coherence tomography of the human retina. Arch. Ophthalmol. 113, 325–332 (1995).

    Article  CAS  Google Scholar 

  17. Hee, M.R. et al. Topography of diabetic macular edema with optical coherence tomography. Ophthalmology 105, 360–370 (1998).

    Article  CAS  Google Scholar 

  18. Hee, M.R. et al. Optical coherence tomography of macular holes. Ophthalmology 102, 748–756 (1995).

    Article  CAS  Google Scholar 

  19. Hee, M.R. et al. Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 103, 1260–1270 (1996).

    Article  CAS  Google Scholar 

  20. Schuman, J.S. et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch. Ophthalmol. 113, 586–596 (1995).

    Article  CAS  Google Scholar 

  21. Schuman, J.S. et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 103, 1889–1898 (1996).

    Article  CAS  Google Scholar 

  22. Bowd, C., Weinreb, R.N., Williams, J.M. & Zangwill, L.M. The retinal nerve fiber layer thickness in ocular hypertensive, normal and glaucomatous eyes with optical coherence tomography. Arch. Ophthalmol. 118, 22–26 (2000).

    Article  CAS  Google Scholar 

  23. Drexler, W. et al. In vivo ultrahigh resolution optical coherence tomography. Opt. Lett. 24, 1221–1223 (1999).

    Article  CAS  Google Scholar 

  24. Morgner, U. et al. Spectroscopic optical coherence tomography. Opt. Lett. 25, 111–113 (2000).

    Article  CAS  Google Scholar 

  25. Morgner, U. et al. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Opt. Lett. 24, 411–413 (1999).

    Article  CAS  Google Scholar 

  26. Gass, J.D.M. Normal macula. in Stereoscopic Atlas of Macular Diseases: Diagnosis and Treatment. vol. 1, 1–49 (Mosby, St. Louis, Missouri, 1997).

    Google Scholar 

  27. Hogan, H., Alvarado, J.A. & Wedell, J.E. Histology of the Human Eye: An Atlas and Textbook. 393–522 (W.B. Saunders, Philadelphia, 1971).

    Google Scholar 

  28. Zeimer, R., Asrani. S., Zou. S., Quigley. H. & Jampel, H. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. Ophthalmology 105, 224–231 (1998).

    Article  CAS  Google Scholar 

  29. Krebs, W. & Krebs, I. in Primate Retina and Choroid—Atlas of Fine Structure in Man and Monkey. 4–8 (Springer, New York, 1991).

    Book  Google Scholar 

  30. Spalton, D.J., Hitchings, R.A. & Hunter, P.A. Anatomy of the retina. in Atlas of Clinical Ophthalmology 2nd edn., 13.3–13.9 (Mosby, St. Louis, Missouri, 1994).

    Google Scholar 

  31. Oyster, C.W. in The Human Eye — Structure and Function. (ed. Oyster, C.W.) 660–661 (Sinauer Associates, Sunderland, Massachusetts, 1999).

    Google Scholar 

  32. Ramrattan, R.S. et al. Morphometric analysis of Bruch's membrane, the choriocappillaris, and the choroid in aging. Invest. Ophthalmol. Vis. Sci. 35, 2857–2864 (1994).

    CAS  Google Scholar 

  33. Rohen, J.W. Morphologie und embryologie des sehorgans. in Augenheilkunde in Klinik und Praxis (ed. Francois, J. & Hollwich, F.) 1.17–1.19 (Georg Thieme, Stuttgart, 1977).

    Google Scholar 

  34. Marshall, J. & Heckenlively, J.R. Pathologic findings and putative mechanisms in retinitis pigmentosa. in Retinitis Pigmentosa. (ed. Heckenlively, J.R.) 37–67 (J.B. Lippincott, Philadelphia, 1988).

    Google Scholar 

  35. Toth, C.A. et al. A comparision of retinal morphology viewed by optical coherence tomography and light microscopy. Arch. Ophthalmol. 115, 1425–1428 (1997).

    Article  CAS  Google Scholar 

  36. Huang, Y. et al. Relation of optical coherence tomography to microanatomy in normal and rd chickens. Invest. Ophthalmol. Vis. Sci. 39, 2405–2416 (1998).

    CAS  Google Scholar 

  37. Chauhan, D.S. & Marshall, J. The interpretation of optical coherence tomography images of the retina. Invest. Ophthalmol. Vis. Sci. 40, 2332–2341 (1999).

    CAS  PubMed  Google Scholar 

  38. Knighton, R.W. & Huang, X.R. Optical coherence tomography of retinal nerve fiber layer (e-letter). Invest. Ophthalmol. Vis. Sci. 41 (2000).

  39. Howland, H.C. & Howland, B. A subjective method for the measurement of monochromatic aberrations of the eye. J. Opt. Soc. Am. 67, 1508–1518 (1977).

    Article  CAS  Google Scholar 

  40. Thrane, L., Yura, H.T. & Andersen, P.E. Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle. J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 17, 484–490 (2000).

    Article  CAS  Google Scholar 

  41. Safe Use of Lasers, ANSI Z 136.1. (American National Standards Institute, New York, 1993).

Download references

Acknowledgements

We thank S. Bursell, A. Claremont, E. Ippen, C. Pitris, K. Saunders, E. Swanson, J. MacNutt, V.M. Miller, J. Prien, S. Hel and C. Bang. Supported in part by the NIH contract RO1-EY11289-13 and EY11006-04, the Air Force Office of Scientific Research contract F49620-98-1-0139, the Joint Services Electronics Program contract DAAH04-95-1-0038 and the Medical Free Electron Laser Program N00014-97-1-1066. W.D. was supported by the Max Kade Foundation and the Österreichische Akademie der Wissenschaften. U.M. and F.X.K. were supported by the Deutsche Forschungsgemeinschaft. R.K.G. was supported from the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. Fujimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drexler, W., Morgner, U., Ghanta, R. et al. Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med 7, 502–507 (2001). https://doi.org/10.1038/86589

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/86589

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing