Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment

Abstract

Allogeneic bone marrow transplantation (in immunocompetent adults) has always required cytoreductive treatment of recipients with irradiation or cytotoxic drugs to achieve lasting engraftment at levels detectable by non-PCR-based techniques (‘macrochimerism’ or ‘mixed chimerism’)1,2,3,4,5,6,7,8,9,10,11. Only syngeneic marrow engraftment at such levels has been achieved in unconditioned hosts12,13. This requirement for potentially toxic myelosuppressive host pre-conditioning has precluded the clinical use of allogeneic bone marrow transplantation for many indications other than malignancies, including tolerance induction. We demonstrate here that treatment of naive mice with a high dose of fully major histocompatibility complex-mismatched allogeneic bone marrow, followed by one injection each of monoclonal antibody against CD154 and cytotoxic T-lymphocyte antigen 4 immunoglobulin, resulted in multi-lineage hematopoietic macrochimerism (of about 15%) that persisted for up to 34 weeks. Long-term chimeras developed donor-specific tolerance (donor skin graft survival of more than 145 days) and demonstrated ongoing intrathymic deletion of donor-reactive T cells. A protocol of high-dose bone marrow transplantation and co-stimulatory blockade can thus achieve allogeneic bone marrow engraftment without cytoreduction or T-cell depletion of the host, and eliminates a principal barrier to the more widespread use of allogeneic bone marrow transplantation14,15,16,17,18. Although efforts have been made to minimize host pre-treatment for allogeneic bone marrow transplantation for tolerance induction, so far none have succeeded in eliminating pre-treatment completely. Our demonstration that this can be achieved provides the rationale for a safe approach for inducing robust transplantation tolerance in large animals and humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Macrochimerism and tolerance after high-dose BMT with co-stimulatory blockade.

Similar content being viewed by others

References

  1. Ildstad, S.T. & Sachs, D.H. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 307, 168– 170 (1984).

    Article  CAS  Google Scholar 

  2. Sharabi, Y. & Sachs, D.H. Mixed chimerism and permanent specific transplantation tolerance induced by a non-lethal preparative regimen. J. Exp. Med. 169, 493–502 (1989).

    Article  CAS  Google Scholar 

  3. Nomoto, K. et al. Tolerance induction in a fully allogeneic combination using anti-T cell receptor-αβ monoclonal antibody, low dose irradiation, and donor bone marrow transfusion. Transplantation 59, 395–401 (1995).

    Article  CAS  Google Scholar 

  4. Kawai, T. et al. Mixed allogeneic chimerism and renal allograft tolerance in cynomologous monkeys. Transplantation 59, 256– 262 (1995).

    Article  CAS  Google Scholar 

  5. Sykes, M., Szot, G.L., Swenson, K. & Pearson, D.A. Induction of high levels of allogeneic hematopoietic reconstitution and donor-specific tolerance without myelosuppressive conditioning. Nature Med. 3, 783–787 (1997).

    Article  CAS  Google Scholar 

  6. De Vries-van der Zwan, A., Besseling, A.C., De Waal, L.P. & Boog, C.J.P. Specific tolerance induction and transplantation: a single-day protocol. Blood 89, 2596–2601 ( 1997).

    CAS  PubMed  Google Scholar 

  7. Wekerle, T. et al. Extrathymic T cell deletion and allogeneic stem cell engraftment induced with costimulatory blockade is followed by central T cell tolerance . J. Exp. Med. 187, 2037– 2044 (1998).

    Article  CAS  Google Scholar 

  8. Sharabi, Y., Aksentijevich, I., Sundt III, T.M., Sachs, D.H. & Sykes, M. Specific tolerance induction across a xenogeneic barrier: production of mixed rat/mouse lymphohematopoietic chimeras using a nonlethal preparative regimen. J. Exp. Med. 172, 195–202 (1990).

    Article  CAS  Google Scholar 

  9. Mayumi, H. & Good, R.A. Long-lasting skin allograft tolerance in adult mice induced across fully allogeneic (multimajor H-2 plus multiminor histocompatibility) antigen barriers by a tolerance-inducing method using cyclophosphamide. J. Exp. Med. 169, 213– 238 (1989).

    Article  CAS  Google Scholar 

  10. Colson, Y.L. et al. Durable mixed allogeneic chimerism and tolerance by a nonlethal radiation-based cytoreductive approach. J. Immunol. 157, 2820–2829 (1996).

    CAS  PubMed  Google Scholar 

  11. Storb, R. et al. Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation. Blood 89, 3048–3054 (1997).

    CAS  PubMed  Google Scholar 

  12. Stewart, F.M., Crittenden, R.B., Lowry, P.A., Pearson-White, S. & Quesenberry, P.J. Long-term engraftment of normal and post-5-fluorouracil murine marrow into normal nonmyeloablated mice. Blood 81, 2566–2571 (1993).

    CAS  PubMed  Google Scholar 

  13. Sykes, M., Szot, G.L., Swenson, K., Pearson, D.A. & Wekerle, T. Separate regulation of peripheral hematopoietic and thymic engraftment. Exp. Hematol. 26, 457 –465 (1998).

    CAS  PubMed  Google Scholar 

  14. Li, H. et al. Mixed allogeneic chimerism induced by a sublethal approach prevents autoimmune diabetes and reverses insulitis in nonobese diabetic (NOD) mice . J. Immunol. 156, 380– 388 (1996).

    CAS  PubMed  Google Scholar 

  15. Wang, B.-Y., Cherry, El-Badri, N.S. & Good, R.A. Prevention of development of autoimmune disease in BXSB mice by mixed bone marrow transplantation. Proc. Natl. Acad. Sci. USA 94, 12065– 12069 (1999).

    Article  Google Scholar 

  16. Messner, R.P. The potential of bone marrow stem cell transplantation in the treatment of autoimmune disease. J. Rheumatol. 24, 819 –821 (1997).

    CAS  PubMed  Google Scholar 

  17. Krivit, W., Peters, C. & Shapiro, E.G. Bone marrow transplantation as effective treatment of central nervous system disease in globoid cell leukodystrophy, metachromatic leukodystrophy, adrenaleukodystrophy, mannosidosis, fucosidosis, aspartylglucosaminuria, Hurler, Maroteaux-Lamy, and Sly syndromes, and Gaucher disease type III. Curr. Opin. Neurol. 12, 167–176 (1999).

    Article  CAS  Google Scholar 

  18. Krivit, W. & Shapiro, E.G. in Bone Marrow Transplantation , eds: Forman, S.J., Blume, K.G., Thomas, E.D. 883– 893 (Blackwell Scientific Publications, Cambridge, Massachusetts, 1994).

    Google Scholar 

  19. Down, J.D. & Ploemacher, R.E. Transient and permanent engraftment potential of murine hematopoietic stem cell subsets: differential effects of host conditioning with gamma radiation and cytotoxic drugs. Exp. Hematol. 21, 913–921 (1993).

    CAS  PubMed  Google Scholar 

  20. Bachar-Lustig, E., Rachamin, N., Li, H.-W., Lan, F. & Reisner, Y. Megadose of T cell-depleted bone marrow overcomes MHC barriers in sublethally irradiated mice. Nature Med. 1, 1268–1273 (1995).

    Article  CAS  Google Scholar 

  21. Larsen, C.P. et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381, 434–438 (1996).

    Article  CAS  Google Scholar 

  22. Kirk, A. et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nature Med. 5, 686–693 ( 1999).

    Article  CAS  Google Scholar 

  23. Kirk, A.D. et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc. Natl. Acad. Sci. USA 94, 8789–8794 (1997).

    Article  CAS  Google Scholar 

  24. Sayegh, M.H. & Turka, L.A. The role of T cell costimulatory activation pathways in transplant rejection. N. Engl. J. Med. 338, 1813–1821 (1998).

    Article  CAS  Google Scholar 

  25. Elwood, E.T. et al. Prolonged acceptance of concordant and discordant xenografts with combined CD40 and CD28 pathway blockade. Transplantation 65, 1422–1428 (1998).

    Article  CAS  Google Scholar 

  26. Trambley, J. et al. Asialo GM1(+) CD8 (+) T cells play a critical role in costimulation blockade-resistant allograft rejection. J. Clin. Invest. 104, 1715–1722 (1999).

    Article  CAS  Google Scholar 

  27. Abrams, J.R. et al. CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J. Clin. Invest. 103, 1243–1252 (1999).

    Article  CAS  Google Scholar 

  28. Tomonari, K. & Fairchild, S. The genetic basis of negative selection of Tcrb-V11+ T cells. Immunogenetics 33, 157–162 (1991).

    Article  CAS  Google Scholar 

  29. Dyson, P.J., Knight, A.M., Fairchild, S., Simpson, E. & Tomonari, K. Genes encoding ligands for deletion of Vβ11 T cells cosegregate with mammary tumour virus genomes. Nature 349, 531–532 ( 1991).

    Article  CAS  Google Scholar 

  30. Acha-Orbea, H. & Palmer, E. Mls- a retrovirus exploits the immune system. Immunol. Today 12, 356–361 (1991).

    Article  CAS  Google Scholar 

  31. Bill, J., Kanagawa, O., Woodland, D. & Palmer, E. The MHC molecule I-E is necessary but not sufficient for the clonal deletion of Vβ11 bearing T cells. J. Exp. Med. 169, 1405–1419 (1989).

    Article  CAS  Google Scholar 

  32. Brocker, T., Riedinger, M. & Karjalainen, K. Targeted expression of major histocompatibility complex (MHC) demonstrates that dendritic cells can induce negative but not positive selection in vivo. J. Exp. Med. 185, 541–550 (1997).

    Article  CAS  Google Scholar 

  33. Sykes, M. Chimerism and central tolerance. Curr. Opin. Immunol. 8, 694–703 (1996).

    Article  CAS  Google Scholar 

  34. Tomita, Y., Khan, A. & Sykes, M. Role of intrathymic clonal deletion and peripheral anergy in transplantation tolerance induced by bone marrow transplantation in mice conditioned with a non-myeloablative regimen. J. Immunol. 153, 1087–1098 (1994).

    CAS  Google Scholar 

  35. Colson, Y.L., Lange, J., Fowler, K. & Ildstad, S.T. Mechanism of cotolerance in nonlethally conditioned mixed chimeras: negative selection of the Vβ T-cells receptor repertoire by both host and donor bone marrow-derived cells. Blood 88, 4601–4610 (1997).

    Google Scholar 

Download references

Acknowledgements

We thank H. Auchincloss Jr., H. Winn and L.A. Turka for review of the manuscript; D.H. Sachs for support and advice; and D. Plemenos for secretarial assistance. This study was supported by National Institutes of Health Grant R01 HL49915 and in part by a sponsored research agreement between Massachusetts General Hospital and BioTransplant. M.H.S. is a recipient of the National Kidney Foundation Clinician Scientist Award. T.W. was supported by fellowships from the Max Kade Foundation and the Austrian Science Fund (Fonds zur Foerderung der wissenschaftlichen Forschung).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan Sykes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wekerle, T., Kurtz, J., Ito, H. et al. Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nat Med 6, 464–469 (2000). https://doi.org/10.1038/74731

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing