Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Superantigen antagonist protects against lethal shock and defines a new domain for T-cell activation

Abstract

Superantigens trigger an excessive cellular immune response, leading to toxic shock. We have designed a peptide antagonist that inhibits superantigen-induced expression of human genes for interleukin-2, gamma interferon and tumor necrosis factor-b, which are cytokines that mediate shock. The peptide shows homology to a b-strand–hinge–a-helix domain that is structurally conserved in superantigens, yet is remote from known binding sites for the major histocompatibility class II molecule and T-cell receptor. Superantigens depend on this domain for T-cell activation. The peptide protected mice against lethal challenge with staphylococcal and streptococcal superantigens. Moreover, it rescued mice undergoing toxic shock. Surviving mice rapidly developed protective antibodies against superantigen that rendered them resistant to further lethal challenges, even with different superantigens. Thus, the lethal effect of superantigens can be blocked with a peptide antagonist that inhibits their action at the beginning of the toxicity cascade, before activation of T cells takes place.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEB agonist and antagonist activity of SEB-related peptides.
Figure 2: p12(150–161) is an antagonist of SEB.
Figure 3: Structures of superantigens.
Figure 4: Broad-spectrum superantigen antagonist activity of p12(150–161) and of antibodies raised against it.
Figure 5: Antagonist peptide protects and rescues mice from superantigen-induced lethal shock.
Figure 6: Mice protected by antagonist rapidly develop broad-spectrum immunity to lethal shock.

Similar content being viewed by others

References

  1. Herman, A., Kappler, J.W., Marrack, P. & Pullen, A.M. Superantigens: mechanisms of T-cell stimulation and role in immune responses . Ann. Rev. Immunol. 9, 745– 772 (1991).

    Article  CAS  Google Scholar 

  2. Schlievert, P.M. Role of superantigens in human disease. J. Infect. Dis. 167, 997–1002 (1993).

    Article  CAS  Google Scholar 

  3. Murray, D.L., Ohlendorf, D.H. & Schlievert, P.M. Staphylococcal and streptococcal superantigens: their role in human diseases. Am. Soc. Microbiol. News 61 , 229–235 (1995).

    Google Scholar 

  4. Bohach, G. A., Fast, D. J., Nelson, R. D. & Schlievert, P. M. Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. Crit. Rev. Microbiol. 17, 251–272 (1990).

    Article  CAS  Google Scholar 

  5. Marrack, P. & Kappler, J. The staphylococcal enterotoxins and their relatives. Science 248, 705– 711 (1990).

    Article  CAS  Google Scholar 

  6. Scholl, P. et al. Toxic shock syndrome toxin 1 binds to major histocompatibility complex class II molecules. Proc. Natl. Acad. Sci. USA 86, 4210–4214 (1989).

    Article  CAS  Google Scholar 

  7. Fraser, J.D. High-affinity binding of staphylococcal enterotoxins A and B to HLA-DR. Nature 339, 221–223 ( 1989).

    Article  CAS  Google Scholar 

  8. Choi, Y. et al. Residues of the variable region of the T-cell-receptor beta-chain that interact with S. aureus toxin superantigens. Nature 346, 471–473 ( 1990).

    Article  CAS  Google Scholar 

  9. Kappler, J. et al. Vβ-specific stimulation of human T cells by staphylococcal toxins. Science 244, 811– 814 (1989).

    Article  CAS  Google Scholar 

  10. Janeway, C. A. et al. T Cell responses to Mls and to bacterial proteins that mimic its behavior. Immunol. Rev. 107, 61– 68 (1989).

    Article  CAS  Google Scholar 

  11. Choi, Y. et al. Interaction of Staphylococcus aureus toxin “superantigens” with human T cells. Proc. Natl. Acad. Sci. USA 86, 8941–8945 (1989).

    Article  CAS  Google Scholar 

  12. Marrack, P., Blackman, M., Kushnir, E. & Kappler, J. The toxicity of staphylococcal enterotoxin B in mice is mediated by T cells . J. Exp. Med. 171, 455– 464 (1990).

    Article  CAS  Google Scholar 

  13. Miethke, T. et al. T cell-mediated lethal shock triggered in mice by the superantigen staphylococcal enterotoxin B: critical role of tumor necrosis factor. J. Exp. Med. 175, 91–98 (1992).

    Article  CAS  Google Scholar 

  14. Hackett, S.P. & Stevens, D.L. Superantigens associated with staphylococcal and streptococcal toxic shock syndrome are potent inducers of tumor necrosis factor-β synthesis. J. Infect. Dis. 168, 232–235 (1993).

    Article  CAS  Google Scholar 

  15. Uchiyama, T. et al. Relative strength of the mitogenic and interleukin-2-production-inducing activities of staphylococcal exotoxins presumed to be causative exotoxins of toxic shock syndrome: toxic shock syndrome toxin-1 and enterotoxins A, B and C to murine and human T cells. Clin. Exp. Immunol. 75, 239–244 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fiorentino, D.F. et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J. Immunol. 146, 3444–3451 (1991).

    CAS  Google Scholar 

  17. Bean, A.G., Freiberg, R.A., Andrade, S., Menon, S. & Zlotnik, A. Interleukin 10 protects mice against staphylococcal enterotoxin B-induced lethal shock. Infect. Immun. 61, 4937–4939 ( 1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Groux, H., Bigler, M., de Vries, J.E. & Roncarolo, M.G. Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J. Exp. Med. 184, 19–29 (1996).

    Article  CAS  Google Scholar 

  19. Swaminathan, S., Furey, W., Pletcher, J. & Sax, M. Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature 359, 801–805 (1992).

    Article  CAS  Google Scholar 

  20. Jardetzky, T.S. et al. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 368, 711–718 (1994).

    Article  CAS  Google Scholar 

  21. Fields, B.A. et al. Crystal structure of a T-cell receptor β-chain complexed with a superantigen. Nature 384, 188– 192 (1996).

    Article  CAS  Google Scholar 

  22. Papageorgiou, A.C., Tranter, H.S. & Acharya, K.R. Crystal structure of microbial superantigen staphylococcal enterotoxin B at 1.5 A resolution: implications for superantigen recognition by MHC class II molecules and T-cell receptors. J. Mol. Biol. 277, 61–79 (1998).

    Article  CAS  Google Scholar 

  23. Leder, L. et al. A mutational analysis of the binding of staphylococcal enterotoxins B and C3 to the T cell receptor β chain and major histocompatibility complex class II. J. Exp. Med. 187, 823– 833 (1998).

    Article  CAS  Google Scholar 

  24. Buelow, R. et al. Localization of the immunologic activity in the superantigen Staphylococcal enterotoxin B using truncated recombinant fusion proteins. J. Immunol. 148, 1–6 ( 1992).

    CAS  PubMed  Google Scholar 

  25. Kappler, J.W., Herman, A., Clements, J. & Marrack, P. Mutations defining functional regions of the superantigen staphylococcal enterotoxin B. J. Exp. Med. 175, 387–389 (1992).

    Article  CAS  Google Scholar 

  26. Hoffmann, M.L. et al. Predictions of T-cell receptor- and major histocompatibility complex-binding sites on staphylococcal enterotoxin C1. Infect. Immun. 62, 3396–3407 ( 1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Betley, M.J. & Mekalanos, J.J. Nucleotide sequence of the type A staphylococcal enterotoxin gene. J. Bacteriol. 170 , 34–41 (1988).

    Article  CAS  Google Scholar 

  28. Galanos, C., Freudenberg, M.A. & Reutter, W. Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc. Natl. Acad. Sci. USA 76, 5939–5943 (1979).

    Article  CAS  Google Scholar 

  29. Lowell, G.H. et al. Intranasal and intramuscular proteosome-staphylococcal enterotoxin B (SEB) toxoid vaccines: immunogenicity and efficacy against lethal SEB intoxication in mice. Infect. Immun. 64, 1706– 1713 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Basma, H. et al. Risk factors in the pathogenesis of invasive group A streptococcal infections: role of protective humoral immunity. Infect. Immun. 67, 1871–1877 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Komisar, J.L., Small-Harris, S. & Tseng, J. Localization of binding sites of staphylococcal enterotoxin B (SEB), a superantigen, for HLA-DR by inhibition with synthetic peptides of SEB. Infect. Immun. 62, 4775– 4780 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jett, M. et al. Identification of sequences important for induction of lymphocyte proliferation by using synthetic peptide fragments of the toxin. Infect. Immun. 62, 3408–3415 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, B., Schlievert, P.M., Gaber, A.O. & Kotb, M. Localization of an immunologically functional region of the streptococcal superantigen pepsin-extracted fragment of type 5 M protein. J. Immunol. 151, 1419–1429 (1993).

    CAS  PubMed  Google Scholar 

  34. Earhart, C.A. et al. Structures of five mutants of toxic shock syndrome toxin-1 with reduced biological activity. Biochemistry 37, 7194–202 (1998).

    Article  CAS  Google Scholar 

  35. Hudson, K.R. et al. Staphylococcal enterotoxin A has two cooperative binding sites on major histocompatibility complex class II. J. Exp. Med. 182, 711–720 (1995).

    Article  CAS  Google Scholar 

  36. Schad, E.M. et al. Crystal structure of the superantigen staphylococcal enterotoxin type A. EMBO J. 14, 3292– 3301 (1995).

    Article  CAS  Google Scholar 

  37. Abrahmsen, L. et al. Characterization of two distinct MHC class II binding sites in the superantigen staphylococcal enterotoxin A. EMBO J. 14, 2978–2986 (1995).

    Article  CAS  Google Scholar 

  38. Muraille, E. et al. Activation of murine T cells by bacterial superantigens requires B7-mediated costimulation. Cell. Immunol. 162, 315–320 (1995).

    Article  CAS  Google Scholar 

  39. Muraille, E., De Smedt, T., Urbain. J., Moser, M. & Leo, O. B7.2 provides co-stimulatory functions in vivo in response to staphylococcal enterotoxin B. Eur. J. Immunol. 25, 2111 –2114 (1995).

    Article  CAS  Google Scholar 

  40. Saha, B. et al. Toxic shock syndrome toxin-1-induced death is prevented by CTLA4Ig . J. Immunol. 157, 3869– 3875 (1996).

    CAS  PubMed  Google Scholar 

  41. Gerez, L., Arad, G., Efrat, S., Ketzinel, M. & Kaempfer, R. Post-transcriptional regulation of human interleukin-2 gene expression at processing of precursor transcripts. J. Biol. Chem. 270, 19569–19575 ( 1995).

    Article  CAS  Google Scholar 

  42. Arad, G. et al. Transient expression of human IL-2 and IFN-γ genes is regulated by interaction between distinct cell subsets. Cellular Immunol. 160, 240–247 ( 1995).

    Article  CAS  Google Scholar 

  43. Jarrous, N., Osman, F. & Kaempfer, R. 2-Aminopurine selectively inhibits splicing of tumor necrosis factor alpha mRNA. Mol. Cell. Biol. 16, 2814–2822 (1996).

    Article  CAS  Google Scholar 

  44. Gerez, L. et al. Aberrant regulation of interleukin-2 but not of interferon-γ gene expression in Down Syndrome (Trisomy 21). Clin. Immunol. Immunopathol. 58, 251–266 ( 1991).

    Article  CAS  Google Scholar 

  45. Kaempfer, R. et al. Prediction of response to treatment in superficial bladder carcinoma through pattern of interleukin-2 gene expression. J. Clin. Oncol. 14, 1778–1786 (1996).

    Article  CAS  Google Scholar 

  46. Prasad, G.S. et al. Structure of toxic shock syndrome toxin 1. Biochemistry 32, 13761–13766 ( 1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank L. Zisu of the Bletterman Macromolecular Research Laboratory of the Hebrew University-Hadassah Medical School for synthesis of peptides, Y. Banai for assistance, M. Katzenellenbogen for help in determination of TNF-β mRNA, and H. Bercovier and S. Brocke for a review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Kaempfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arad, G., Levy, R., Hillman, D. et al. Superantigen antagonist protects against lethal shock and defines a new domain for T-cell activation. Nat Med 6, 414–421 (2000). https://doi.org/10.1038/74672

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74672

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing