Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Formation of stable complexes between two Alzheimer's disease gene products: Presenilin-2 and β-amyloid precursor protein

Abstract

Mutations in the presenilin genes are associated with early onset familial Alzheimer's disease and lead to increased accumulation of βA4 peptide, the proteolytic product of the amyloid precursor protein (APP). To test whether presenilins interfere with APP metabolism, presenilin-2 (PS2) was coexpressed with APP in mammalian cells. Analysis of PS2 immunoprecipitates revealed that a fraction of APP was associated with the PS2 immunocomplexes. This non-covalent association was specific for the APP family of proteins and restricted to immature forms, occuring probably during transit through the endoplasmic reticulum. Additionally, coexpression with PS2 resulted in a decrease of APP secretion, suggesting a direct participation of presenilins in the intracellular sorting, trafficking and processing of APP molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760 (1995).

    Article  CAS  Google Scholar 

  2. Rogaev, E.I. et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376, 775–778 (1995).

    Article  CAS  Google Scholar 

  3. Levy-Lahad, E. et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269, 973–977 (1995).

    Article  CAS  Google Scholar 

  4. Van Broeckhoven, C. Presenilins and Alzheimer disease. Nature Genet. 11, 230–232 (1995).

    Article  CAS  Google Scholar 

  5. Lemere, C.A. et al. The E280A presenilin 1 Alzheimer mutation produces increased Aβ42 deposition and severe cerebellar pathology. Nature Med. 2, 1146–1150 (1996).

    Article  CAS  Google Scholar 

  6. Kang, J. et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736 (1987).

    Article  CAS  Google Scholar 

  7. Selkoe, D.J., β-protein and the genetics of Alzheimer's disease. J. Biol. Chem. 271 18295–18298 (1996).

    Article  CAS  Google Scholar 

  8. Weidemann, A. et al. Identification, biogenesis, and localization of precursors of Alzheimer's disease A4 amyloid protein. Cell 57, 115–126 (1989).

    Article  CAS  Google Scholar 

  9. Esch, F.S. et al. Cleavage of amyloid β peptide during constitutive processing of its precursor. Science 248, 1122–1124 (1990).

    Article  CAS  Google Scholar 

  10. Haass, C. et al. Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325 (1992).

    Article  CAS  Google Scholar 

  11. Shoji, M. et al. Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 258, 126–129 (1992).

    Article  CAS  Google Scholar 

  12. Suzuki, N. et al. An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (βAPP717) mutants. Science 264, 1336–1340 (1994).

    Article  CAS  Google Scholar 

  13. Jarrett, J.T., Berger, E.P. & Lansbury, P.T. Jr., The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer's disease. Biochemistry 32, 4693–4697 (1993).

    Article  CAS  Google Scholar 

  14. Citron, M. et al. Mutation of the β-amyloid precursor protein in familial Alzheimer's disease increases β-protein production. Nature 360, 672–674 (1992).

    Article  CAS  Google Scholar 

  15. Cai, X.D., Golde, T.E. & Younkin, S.G. Release of excess amyloid β protein from a mutant amyloid β protein precursor. Science 259, 514–516 (1993).

    Article  CAS  Google Scholar 

  16. Haass, C., Hung, A.Y., Selkoe, D. & Teplow, D.B. Mutations associated with a locus for familial Alzheimer's disease result in alternative processing of amyloid beta-protein precursor. J. Biol. Chem. 269, 17741–17748 (1994).

    CAS  PubMed  Google Scholar 

  17. Kovacs, D.M. et al. Alzheimer-associated presenilins 1 and 2: Neuronal expression in brain and localization to intra cellular membranes in mammalian cells. Nature Med. 2, 224–229 (1996).

    Article  CAS  Google Scholar 

  18. Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaque of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Med. 2, 864–870 (1996).

    Article  CAS  Google Scholar 

  19. Duff, K. et al. Increased amyloid-b42 (43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713 (1996).

    Article  CAS  Google Scholar 

  20. Thinakaran, G. et al. Endoproteoysis of presenilin 1 and acumulation of processed derivatives in vivo. Neuron 17, 1–20 (1996).

    Article  Google Scholar 

  21. Mercken, M. et al. Characterisation of human presenilin 1 using N-terminal specific monoclonal antibodies: Evidence that Alzheimer mutations affect proteolytic processing. FEBS Lett. 389, 297–303 (1996).

    Article  CAS  Google Scholar 

  22. Kim, T.W., Hallmark, O.G., Pettingell, W., Wasco, W. & Tanzi, R.E. Proteolytic processing of wild-type and mutant forms of presenilin 2. Neurobiol. Aging 17, 155–159 (1996).

    Article  Google Scholar 

  23. Podlisny, M.B., Tolan, D.R. & Selkoe, D.J. Homology of the amyloid beta protein precursor in monkey and human supports a primate model for beta amyloidosis in Alzheimer's disease. Am. J. Pathol. 138, 1423–1435 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. König, G. et al. Identification and differential expression of a novel alternative splice isoform of the βA4 amyloid precursor protein (APP) mRNA in leukocytes and brain microglial cells. J. Biol. Chem. 267, 10804–10809 (1992).

    PubMed  Google Scholar 

  25. Wasco, W. et al. Identification of a mouse brain cDNA that encodes a protein related to the Alzheimer disease-associated amyloid beta protein precursor. Proc. Natl. Acad. Sci. USA 89, 10758–10762 (1992).

    Article  CAS  Google Scholar 

  26. High, S. et al. Sec61p is adjacent to nascent type 1 and type II signal-anchor proteins during their membrane insertion. J. Cell Biol. 121, 743–750 (1993).

    Article  CAS  Google Scholar 

  27. Simons, M.T. et al. Amyloidogenic processing of the human amyloid precursor protein in primary cultures of rat hippocampal neurons. J. Neurosci. 16, 899–908 (1996).

    Article  CAS  Google Scholar 

  28. Hammond, C. & Helenius, A. Quality control in the secretory pathway: Retention of misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus. J. Cell Biol. 126, 41 52 (1994).

    Article  CAS  Google Scholar 

  29. Haass, C. & Selkoe, D.J. Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell 75, 1039–1042 (1993).

    Article  CAS  Google Scholar 

  30. Kuentzel, S.L. et al. The Alzheimer β-amyloid protein precursor/protease nexin-II is cleaved by secretase in a trans-Golgi secretory compartment in human neuroglioma cells. Biochem. J. 295, 367–378 (1993).

    Article  CAS  Google Scholar 

  31. Citron, M. et al. Inhibition of amyloid β-protein production in neural cells by the serine protease inhibitor AEBSF. Neuron 17, 171–179 (1996).

    Article  CAS  Google Scholar 

  32. Zhong, Z., Quon, D., Higgins, L.S., Higaki, J. & Cordell, B. Increased amyloid production from aberrant beta-amyloid precursor proteins. J. Biol. Chem. 269, 12179–12184 (1994).

    CAS  PubMed  Google Scholar 

  33. Games, D. et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β–amyloid precursor protein. Nature 373, 523–527 (1995).

    Article  CAS  Google Scholar 

  34. Knop, M., Finger, A., Braun, T., Hellmuth, K. & Wolf, D.H., Der1 a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J. 15, 753–763 (1996).

    Article  CAS  Google Scholar 

  35. Kunkel, T.A., Roberts, J.D. & Zakour, R.A. Rapid and efficient site specific mutagenesis without phenotypic selection. Meth. Enzym. 154, 367–382 (1987).

    Article  CAS  Google Scholar 

  36. Dyrks, T. et al. Generation of beta A4 from the amyloid protein precursor and fragments thereof. FEBS Lett. 335, 89–93 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weidemann, A., Paliga, K., Dürrwang, U. et al. Formation of stable complexes between two Alzheimer's disease gene products: Presenilin-2 and β-amyloid precursor protein. Nat Med 3, 328–332 (1997). https://doi.org/10.1038/nm0397-328

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0397-328

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing