Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Infection of human cells by an endogenous retrovirus of pigs

Abstract

The possible use of pig organs and tissues as xenografts in humans is actively being considered in biomedical research. We therefore examined whether pig endogenous retrovirus (PERV) genomes can be infectiously transmitted to human cells in culture. Two pig kidney cell lines spontaneously produce C-type retrovirus particles. Cell-free retrovirus produced by the PK-15 kidney cell line (PERV-PK) infected pig, mink and human kidney 293 cell lines and co-cultivation of X-irradiated PK-15 cells with human cells resulted in a broader range of human cell infection, including human diploid fibroblasts and B- and T-cell lines. Kidney, heart and spleen tissue obtained from domestic pigs contained multiple copies of integrated PERV genomes and expressed viral RNA. Upon passage in human cells PERV-PK could rescue a Moloney retroviral vector and acquired resistance to lysis by human complement.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Institute of Medicine. Xenotransplantation, science, ethics and public policy. (National Academy Press, Washington DC, 1996).

  2. Nuffield Council on Bioethics. Animal-to-human transplants: The ethics of xeno-transplantation.(London, 1996).

  3. Gunsalus, J.R., Brady, D.A., Coulter, S.M., Gray, B.M., & Edge, A.S.B. Reduction of serum cholesterol in Watanabe rabbits by xenogenic hepato Cellular transplantation. Nature Med. 3, 48–53 (1997).

    CAS  Article  PubMed  Google Scholar 

  4. Starzl, T.E. et al. Baboon-to-human liver transplantation. Lancet 341, 65–71 (1993).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Lehrman, S. AIDS patient given baboon bone marrow. Nature 378, 756 (1995).

    CAS  Article  PubMed  Google Scholar 

  6. Groth, C.G. et al. Transplantation of porcine fetal pancreas to diabetic patients. Lancet 344, 1402–1404 (1994).

    CAS  Article  PubMed  Google Scholar 

  7. Makowa, L. et al The use of a pig liver xenograft for temporary support of a patient with fulminant hepatic failure. Transplantation 59, 1654–1659 (1995).

    CAS  Article  PubMed  Google Scholar 

  8. Ryan, U.S. Complement inhibitory therapeutics and Xenotransplantation. Nature Med. 1, 967–968 (1995).

    CAS  Article  PubMed  Google Scholar 

  9. Bach, F.H. et al. Barriers to Xenotransplantation. Nature Med. 1, 869–873 (1995).

    CAS  Article  PubMed  Google Scholar 

  10. Sandrin, M.S. et al. Enzymatic remodelling of the carbohydrate surface of a xenogenic Cell substantially reduces human antibody binding and complement mediated cytolysis. Nature Med. 1, 1261–1267 (1995).

    CAS  Article  PubMed  Google Scholar 

  11. Foder, W.L. et al. Expression of a human complement inhibitor in a transgenic pig as a model for the prevention of xenogenic hyperacute rejection. Proc. Natl. Acad. Sci. USA 91, 11153–11157 (1994).

    Article  Google Scholar 

  12. McCurry, K.R. et al. Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. Nature Med. 1, 423–427 (1995).

    CAS  Article  PubMed  Google Scholar 

  13. Cozzi, E. & White, D.J.G. The generation of transgenic pigs as potential organ donors for humans. Nature Med. 1, 964–966 (1995).

    CAS  Article  PubMed  Google Scholar 

  14. Stoye, J.P. & Coffin, J.M. The dangers of Xenotransplantation. Nature Med. 1, 1100 (1995).

    CAS  Article  PubMed  Google Scholar 

  15. Allan, J.S. Xenotransplantation at a cross-roads: Prevention versus progress. Nature Med. 2, 18–21 (1996).

    CAS  Article  PubMed  Google Scholar 

  16. Wilkinson, D., Mager, D.L. & Leong, J.A.C. Endogenous human retroviruses. in The Retroviridae (ed. Levy, J. A.). vol. 3, 465–535 (Plenum Press, New York, 1994).

    Chapter  Google Scholar 

  17. Patience, C. Wilkinson, D.A. & Weiss, R.A. Our retroviral heritage. Trends Genet. (in the press).

  18. Coffin, J.M. Endogenous retroviruses. in RNA Tumor Viruses (eds. Weiss, R.A., Varmus, H.E., Teich, N.M. & Coffin, J.M.). (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1985).

    Google Scholar 

  19. Benveniste, R.E. et al. Infectious type-C virus isolated from baboon placenta. Nature 248, 17–20 (1974).

    CAS  Article  PubMed  Google Scholar 

  20. McAllister, R.M. et al. C-type virus released from cultured human rhabdomyosar-coma Cells. Nature New Biol. 235, 3–6 (1972).

    CAS  Article  PubMed  Google Scholar 

  21. Armstrong, J.A. Porterfield, J.S. & De-Madrid, A.T. C-type virus in pig kidney Cell lines. J. Gen. Virol. 10, 195–198 (1971).

    CAS  Article  PubMed  Google Scholar 

  22. Todaro, G.J., Benveniste, R.E., Lieber, M.M., & Sherr, C.J. Characterisation of a Type C virus released from the porcine Cell line PK (15). Virology 58, 65–74 (1974).

    CAS  Article  PubMed  Google Scholar 

  23. Moennig, V. et al. C-type particles produced by a permanent Cell line from a leukemic pig. II. Physical, chemical, and serological characterization of the particles. Virology 57, 179–188 (1974).

    CAS  Article  PubMed  Google Scholar 

  24. Lieber, M.M., Sherr, C.J., Benveniste, R.E. & Todaro, G.J. Biologic and immuno-logic properties of porcine type C virus. Virology 66, 616–619 (1975).

    CAS  Article  PubMed  Google Scholar 

  25. Takeuchi, Y. et al. Type C retrovirus inactivation by human complement is determined by both the viral genome and the producer Cell. J. Virol. 68, 8001–8007 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rother, R.P. et al. A novel mechanism of retrovirus inactivation in human serum mediated by anti-alpha-galactosyl natural antibody. J. Exp. Med. 182, 1345–1355 (1995).

    CAS  Article  PubMed  Google Scholar 

  27. Takeuchi, Y. et al. Sensitization of Cells and retroviruses to human serum by (α1-3) galactosyltransferase. Nature 379, 85–88 (1996).

    CAS  Article  PubMed  Google Scholar 

  28. Tristem, M. et al. Characterisation of a novel murine leukemic virus-related subgroup in mammals. J. Virol. 70, 8241–8246 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Benveniste, R.E. & Todaro, G.J. Evolution of type C viral genes: Preservation of ancestral murine type C viral sequences in pig Cellular DNA. Proc. Nat. Acad. Sci. USA 72, 4090–4094 (1975).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Levy, J.A. Xenotropic viruses: Murine leukemia viruses associated with NIH Swiss, NZB and other mouse strains. Science 182, 1151–1153 (1973).

    CAS  Article  PubMed  Google Scholar 

  31. Bostock, D.E., & Owen, L.N. Porcine and ovine lymphosarcoma. A review. J. Natl. Cancer Inst. 50, 933–939 (1973).

    CAS  Article  PubMed  Google Scholar 

  32. Kawakami, T.G. et al. C-type virus associated with gibbon lymphosarcoma. Nature New Biol. 235, 170–171 (1972).

    CAS  Article  PubMed  Google Scholar 

  33. Kawakami, T.G., Sun, L., & McDowell, T.S. Natural transmission of gibbon leukemia virus. J. Natl. Cancer Inst. 61, 1113–1115 (1978).

    CAS  PubMed  Google Scholar 

  34. Lieber, M.M. et al. Isolation from the Asian mouse Mus caroli of an endogenous type C virus related to infectious primate type C viruses. Proc. Natl. Acad. Sci. USA 72, 2315–2319 (1975).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Donahue, R.E. et al. Helper virus induced T-Cell lymphoma in non human primates after retroviral mediated gene transfer. J. Exp. Med. 176, 1125–1135 (1992).

    CAS  Article  PubMed  Google Scholar 

  36. Michaels, M.G., & Simmons, R.L. Xenotransplant-associated zoonoses: Strategies for prevention. Transplantation 57, 1–7 (1994).

    CAS  Article  PubMed  Google Scholar 

  37. Scadden, D.T., Fuller, B., & Cunningham, J.M., Human Cells infected with retrovirus vectors acquire an endogenous murine provirus. J. Virol. 64, 424–427 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Purcell, D.F.J. et al. An array of murine leukemia virus-related elements is transmitted and expressed in a primate recipient of retroviral gene transfer. J. Virol. 70, 887–897 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Goodchild, N.L., Freeman, J.B., & Mager, D.L., Herv-H endogenous retroviral sequences in human genomic DNA: Evidence for amplification via retrotrans-position. Virology 206, 164–173 (1995).

    CAS  Article  PubMed  Google Scholar 

  40. Patience, C. et al. Human endogenous retrovirus expression and reverse transcrip-tase activity in the T47D mammaiy carcinoma Cell line. J. Virol. 70, 2654–2657 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Simpson, G.R. et al. Endogenous D-type (HERV-K) related sequences are packaged into retroviral particles in the placenta and possess open reading frames for reverse transcriptase. Virology 222, 451–456 (1996).

    CAS  Article  PubMed  Google Scholar 

  42. Weiss, R.A., Why Cell biologists should be aware of genetically transmitted viruses. Natl. Cancer Inst. Monogr. 48, 183–189 (1978).

    Google Scholar 

  43. Homer. The Odyssey. Translated by E. V. Rieu. Penguin Classics. (1946).

  44. Silver, J., Maudru, T., Fujita, K. & Repaske, R. An RT-PCR assay for the enzyme activity of reverse transcriptase capable of detecting single virions. Nucleic Acids Res. 21, 3593–3594 (1994).

    Article  Google Scholar 

  45. Cosset, F.L., Takeuchi, Y., Battini, J.L., Weiss, R.A. & Collins, M.K. High titer packaging Cells producing recombinant retroviruses resistant to human serum. J. Virol. 69, 7430–7436 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tristem, M. Amplification of divergent retroviral elements by PCR. BioTechniques 20, 608–612 (1996).

    CAS  PubMed  Google Scholar 

  47. Simmons, G. et al. Primary syncytium-inducing HIV-1 isolates are dual-tropic and most can use either Lestr or CCR5 as co-receptors for virus entry. J. Virol. 70, 8355–8360 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kotani, H. et al. Improved methods of retroviral vector transduction and production for gene therapy. Hum. Cene Ther. 5, 19–28 (1994).

    CAS  Article  Google Scholar 

  49. Epstein, M.A., Achong, B.G. & Barr, Y.M. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1, 702–703 (1964).

    CAS  Article  PubMed  Google Scholar 

  50. Achong, B.G., Trumper, P.A., & Giovanella, B.C. C-type virus particles in human tumours transplanted into nude mice. Brit. J. Cancer 34, 203–206 (1976).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Patience, C., Takeuchi, Y. & Weiss, R. Infection of human cells by an endogenous retrovirus of pigs. Nat Med 3, 282–286 (1997). https://doi.org/10.1038/nm0397-282

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0397-282

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing