Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impaired wound healing in mice with a disrupted plasminogen gene

Abstract

Activation of plasminogen (Plg) has been proposed to play a role in proteolytic degradation of extracellular matrices in tissue remodeling events, including wound healing. However, there has been no definitive proof of involvement of Plg in such processes. We now report that healing of skin wounds is severely impaired in mice made deficient in Plg by targeted gene disruption. The results demonstrate that Plg is required for normal repair of skin wounds in mice and support the assumption that it also plays a central role in other disease processes involving extracellular matrix degradation, such as cancer invasion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blasi, F., Vassalli, J.-D. & Danø, K. Urokinase-type plasminogen activator: Proenzyme, plasma membrane binding site and inhibitors. J. Cell Biol. 104, 801–804 (1987).

    Article  CAS  Google Scholar 

  2. Saksela, O. & Rifkin, D.B. Cell-associated plasminogen activation: Regulation and physiological functions. Annu. Rev. Cell Biol. 4, 93–126 (1988).

    Article  CAS  Google Scholar 

  3. Vassalli, J.-D. Sappino, A.P. & Belin, D. The plasminogen activator/plasmin system. J. Clin. Invest. 88, 1067–1072 (1991).

    Article  CAS  Google Scholar 

  4. Danø, K. et al. The urokinase receptor. Protein structure and role in plasminogen activation and cancer invasion. Fibrinolysis 8, 189–203 (1994).

    Article  Google Scholar 

  5. Collen, D. Towards improved thrombolytic therapy. Lancet 342, 34–36 (1993).

    Article  CAS  Google Scholar 

  6. Beers, W.H., Strickland, S. & Reich, E. Ovarian plasminogen activator: Relationship to ovulation and hormonal regulation. Cell 6, 387–394 (1975).

    Article  CAS  Google Scholar 

  7. Ossowski, L., Biegel, D. & Reich, E. Mammary plasminogen activator: Correlation with involution, hormonal modulation and comparison between normal and neoplastic tissue. Cell 16, 929–940 (1979).

    Article  CAS  Google Scholar 

  8. Ny, T., Bjersing, L., Hsueh, A.J.W. & Loskutoff, D.J. Cultured granulosa cells produce two plasminogen activators and an antiactivator, each regulated differently by gonadotropinsa. Endocrinology 116, 1666–1668 (1985).

    Article  CAS  Google Scholar 

  9. Sappino, A.P., Huarte, J., Belin, D. & Vassalli, J.-D. Plasminogen activators in tissue remodeling and invasion-messenger RNA localization in mouse ovaries and implanting embryos. J. Cell Biol. 109, 2471–2479 (1989).

    Article  CAS  Google Scholar 

  10. Talhouk, R.S., Bissell, M.J. & Werb, Z. Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J. Cell Biol. 118, 1271–1282 (1992).

    Article  CAS  Google Scholar 

  11. Morioka, S., Lazarus, G.S., Baird, J.L. & Jensen, P.L. Migrating keratinocyes express urokinase-type plasminogen activator. J. Invest. Dermatol. 88, 418–423 (1987).

    Article  CAS  Google Scholar 

  12. Grondahl-Hansen, J., Lund, L.R., Ralfkiaer, E., Ottevanger, V. & Danø, K. Urokinase-and tissue-type plasminogen activators in keratinocytes during wound reepithelialization in vivo. J. Invest. Dermatol. 90, 790–795 (1988).

    Article  CAS  Google Scholar 

  13. Rømer, J. et al. Differential expression of urokinase-type plasminogen activator and its type-1 inhibitor during healing of mouse skin wounds. J. Invest. Dermatol. 97, 803–811 (1991).

    Article  Google Scholar 

  14. Rømer, J. et al. The receptor for urokinase-type plasminogen activator is expressed by keratinocytes at the leading edge during re-epithelialization of mouse skin wounds. J. Invest. Dermatol. 102, 519–522 (1994).

    Article  Google Scholar 

  15. Schäfer, B.M., Maier, K., Eickhoff, U., Todd, R.F. & Kramer, M.D. Plasminogen activation in healing human wounds. Am. J. Pathol. 144, 1269–1280 (1994).

    PubMed  PubMed Central  Google Scholar 

  16. Pepper, M.S., Vassalli, J.-D. Montesano, R. & Orci, L. Urokinase-type plasminogen activator is induced in migrating capillary endothelial cells. J. Cell Biol. 105, 2535–2541 (1987).

    Article  CAS  Google Scholar 

  17. Pepper, M.S. et al. Upregulation of urokinase receptor expression on migrating endothelial cells. J. Cell Biol. 122, 673–684 (1993).

    Article  CAS  Google Scholar 

  18. Danø, K. et al. Plasminogen activators, tissue degradation, and cancer. Adv. Cancer Res. 44, 139–266 (1985).

    Article  Google Scholar 

  19. Ossowski, L. Plasminogen activator dependent pathways in the dissemination of human tumor cells in the chick embryo. Cell 52, 321–328 (1988).

    Article  CAS  Google Scholar 

  20. Liotta, L.A., Steeg, P.S. & Stetler-Stevenson, W.G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327–336 (1991).

    Article  CAS  Google Scholar 

  21. Pyke, C. et al. Urokinase-type plasminogen activator is expressed in stromal cells and its receptor in cancer cells at invasive foci in human colon adenocar-cinomas. Am. J. Pathol. 138, 1059–1067 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Crowley, C.W. et al. Prevention of metastasis by inhibition of the urokinase receptor. Proc. Natl. Acad. Sci. USA 90, 5021–5025 (1993).

    Article  CAS  Google Scholar 

  23. Heiss, M.M. et al. Individual development and uPA-receptor expression of disseminated tumour cells in bone marrow: A reference to early systemic disease in solid cancer. Nature Med. 1, 1035–39 (1995).

    Article  CAS  Google Scholar 

  24. Bugge, T.H., Flick, M.J., Daugherty, C.C. & Degen, J.L. Plasminogen deficiency causes severe thrombosis but is compatible with development and reproduction. Genes Dev. 9, 794–807 (1995).

    Article  CAS  Google Scholar 

  25. Clark, R.A.F. & Henson, P.M., eds. The Molecular and Cellular Biology of Wound Repair (Plenum, New York, 1988).

    Google Scholar 

  26. Donaldson, D.J. & Mahan, J.T. Keratinocyte migration and the extracellular matrix. J. Invest. Dermatol. 90, 623–628 (1988).

    Article  CAS  Google Scholar 

  27. Unkeless, J.C., Gordon, S. & Reich, E. Secretion of plasminogen activator by stimulated macrophages. J. Exp. Med. 139, 834–850 (1974).

    Article  CAS  Google Scholar 

  28. Heiple, J.M. & Ossowski, L. Human neutrophil plasminogen activator is localized in specific granules and is translocated to the cell surface by exocytosis. J. Exp. Med. 164, 826–840 (1986).

    Article  CAS  Google Scholar 

  29. Pöllanen, J., Hedman, K., Nielsen, L.S., Danø, K. & Vaheri, A. Ultrastructural localization of plasma membrane-associated urokinase-type plasminogen activator at focal contacts. J. Cell Biol. 106, 87–95 (1988).

    Article  Google Scholar 

  30. Vassalli, J.-D. Wohlwend, A. & Belin, D. Urokinase-catalyzed plasminogen activation at the monocyte/macrophage cell surface: A localized and regulated proteolytic system. Cur. Top. Microbiol. Immunol. 181, 65–86 (1992).

    CAS  Google Scholar 

  31. Salo, T., Makela, M., Kylmaniemi, M., Autio-Harmainen, H. & Larjava, H. Expression of matrix metalloproteinase-2 and -9 during early human wound healing. Lab. Invest. 70, 176–182 (1994).

    CAS  PubMed  Google Scholar 

  32. Inoue, M., Kratz, G., Haegerstrand, A. & Stahle-Backdahl, M. Collagenase expression is rapidly induced in wound-edge keratinocytes after acute injury in human skin, persists during healing, and stops at re-epithelialization. J. Invest. Dermatol. 104, 479–483 (1995).

    Article  CAS  Google Scholar 

  33. Saarialho-Kere, U.K. et al. Interstitial collagenase is expressed by keratinocytes that are actively involved in reepithelialization in blistering skin disease. J. Invest. Dermatol. 104, 982–988 (1995).

    Article  CAS  Google Scholar 

  34. Werb, Z., Mainardi, C., Vater, C.A. & Harris, E.D. Endogenous activation of latent collagenase by rheumatoid synovial cells. N. Engl. J. Med. 296, 1017–1023 (1977).

    Article  CAS  Google Scholar 

  35. Mignatti, P. & Rifkin, D.B. Biology and biochemistry of proteinases in tumor invasion. Physiol. Rev. 73, 161–195 (1993).

    Article  CAS  Google Scholar 

  36. Grainger, D.J., Kemp, P.R., Liu, A.C., Lawn, R.M. & Metcalfe, J.C. Activation of transforming growth factor-beta is inhibited in transgenic apolipoprotein(a) mice. Nature 370, 460–462 (1994).

    Article  CAS  Google Scholar 

  37. Suh, T. et al. Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient mice. Genes Dev. 9, 2020–2033 (1995).

    Article  CAS  Google Scholar 

  38. Carmeliet, P. et al. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 368, 419–424 (1994).

    Article  CAS  Google Scholar 

  39. Dvorak, H.F. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    CAS  PubMed  Google Scholar 

  40. Prendergast, G.C., Diamond, L.E., Dahl, D. & Cole, M.D. The c-myc-regulated gene mrl encodes plasminogen activator inhibitor 1. Mol. Cell. Biol. 10, 1265–1269 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rømer, J., Bugge, T., Fyke, C. et al. Impaired wound healing in mice with a disrupted plasminogen gene. Nat Med 2, 287–292 (1996). https://doi.org/10.1038/nm0396-287

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0396-287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing