Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD40L stabilizes arterial thrombi by a β3 integrin–dependent mechanism

Abstract

CD40L, a member of the tumor necrosis factor family of ligands, plays a major role in immune responses via its receptor, CD40. Recently, CD40L has been detected on the surfaces of activated platelets and shown to activate endothelium. Here we further addressed the function of platelet CD40L. We show that absence of CD40L affects the stability of arterial thrombi and delays arterial occlusion in vivo. Infusion of recombinant soluble (rs)CD40L restored normal thrombosis, whereas rsCD40L lacking the KGD integrin-recognition sequence did not. CD40-deficient mice exhibited normal thrombogenesis. rsCD40L specifically bound to purified integrin αIIbβ3 and to activated platelets in a β3-dependent manner and induced platelet spreading. In addition, rsCD40L promoted the aggregation of either human or mouse platelets under high shear rates. Thus, CD40L appears to be an αIIbβ3 ligand, a platelet agonist, and necessary for stability of arterial thrombi.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantitative analysis of arterial thrombogenesis in wild-type, CD40−/− and CD40L−/− mice.
Figure 2: Platelet deposition in a collagen-coated perfusion chamber.
Figure 3: Effect of rsCD40L on human thrombi growth at shear rate 1,000/s.
Figure 4: rsCD40L binding to αIIbβ3.
Figure 5: Platelet spreading on rsCD40L-coated glass coverslips.

Similar content being viewed by others

References

  1. van Kooten, C. & Banchereau, J. CD40-CD40 ligand. J. Leukoc. Biol. 67, 2–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Henn, V. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391, 591–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Ramesh, N., Geha, R.S. & Notarangelo, L.D. CD40 ligand and the hyper-IgM syndrome. in Primary Immunodeficiency Diseases A Molecular and Genetic Approach (eds. Ochs, H.D., Smith, C.I.E. & Puck, J.M.) 233–249 (Oxford University Press, New York, 1999).

    Google Scholar 

  4. Lutgens, E. et al. Requirement for CD154 in the progression of atherosclerosis. Nature Med. 5, 1313–1316 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Schonbeck, U. & Libby, P. The CD40/CD154 receptor/ligand dyad. Cell Mol. Life Sci. 58, 4–43 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Kotowicz, K., Dixon, G.L., Klein, N.J., Peters, M.J. & Callard, R.E. Biological function of CD40 on human endothelial cells: costimulation with CD40 ligand and interleukin-4 selectively induces expression of vascular cell adhesion molecule-1 and P-selectin resulting in preferential adhesion of lymphocytes. Immunology 100, 441–448 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miller, D.L., Yaron, R. & Yellin, M.J. CD40L-CD40 interactions regulate endothelial cell surface tissue factor and thrombomodulin expression. J. Leukoc. Biol. 63, 373–379 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Henn, V., Steinbach, S., Buchner, K., Presek, P. & Kroczek, R.A. The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood 98, 1047–1054 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Aukrust, P. et al. Enhanced levels of soluble and membrane-bound CD40 ligand in patients with unstable angina. Possible reflection of T lymphocyte and platelet involvement in the pathogenesis of acute coronary syndromes. Circulation 100, 614–620 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Mach, F., Schonbeck, U., Bonnefoy, J.Y., Pober, J.S. & Libby, P. Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40: induction of collagenase, stromelysin, and tissue factor. Circulation 96, 396–399 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Lindmark, E., Tenno, T. & Siegbahn, A. Role of platelet P-selectin and CD40 ligand in the induction of monocytic tissue factor expression. Arterioscler. Thromb. Vasc. Biol. 20, 2322–2328 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Celi, A. et al. P-selectin induces the expression of tissue factor on monocytes. Proc. Natl. Acad. Sci. USA 91, 8767–8771 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Andre, P., Hartwell, D., Hrachovinova, I., Saffaripour, S. & Wagner, D.D. Pro-coagulant state resulting from high levels of soluble P-selectin in blood. Proc. Natl. Acad. Sci. USA 97, 13835–13840 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Graf, D. et al. A soluble form of TRAP (CD40 ligand) is rapidly released after T cell activation. Eur. J. Immunol. 25, 1749–1754 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Scarborough, R.M. et al. Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein IIb-IIIa. J. Biol. Chem. 268, 1066–1073 (1993).

    CAS  PubMed  Google Scholar 

  16. Kawai, T., Andrews, D., Colvin, R.B., Sachs, D.H. & Cosimi, A.B. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nature Med. 6, 114 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Denis, C. et al. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc. Natl. Acad. Sci. USA 95, 9524–9529 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ni, H. et al. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J. Clin. Invest. 106, 385–392 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lawler, J. & Hynes, R.O. An integrin receptor on normal and thrombasthenic platelets that binds thrombospondin. Blood 74, 2022–2027 (1989).

    CAS  PubMed  Google Scholar 

  20. Larsen, C.P. et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381, 434–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Kirk, A.D. et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nature Med. 5, 686–693 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Schonbeck, U., Sukhova, G.K., Shimizu, K., Mach, F. & Libby, P. Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. Proc. Natl. Acad. Sci. USA 97, 7458–7463 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lutgens, E. et al. Both early and delayed anti-CD40L antibody treatment induces a stable plaque phenotype. Proc. Natl. Acad. Sci. USA 97, 7464–7469 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Melter, M. et al. Ligation of CD40 induces the expression of vascular endothelial growth factor by endothelial cells and monocytes and promotes angiogenesis in vivo. Blood 96, 3801–3808 (2000).

    CAS  PubMed  Google Scholar 

  25. Giesen, P.L. et al. Blood-borne tissue factor: another view of thrombosis. Proc. Natl. Acad. Sci. USA 96, 2311–2315 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ruoslahti, E. & Pierschbacher, M.D. New perspectives in cell adhesion: RGD and integrins. Science 238, 491–497 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Scarborough, R.M. et al. Barbourin. A GP IIb-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. J. Biol. Chem. 266, 9359–9362 (1991).

    CAS  PubMed  Google Scholar 

  28. Charo, I.F., Nannizzi, L., Phillips, D.R., Hsu, M.A. & Scarborough, R.M. Inhibition of fibrinogen binding to GP IIb-IIIa by a GP IIIa peptide. J. Biol. Chem. 266, 1415–1421 (1991).

    CAS  PubMed  Google Scholar 

  29. Du, X.P. et al. Ligands “activate” integrin α IIb β 3 (platelet GPIIb-IIIa). Cell 65, 409–416 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Hodivala-Dilke, K.M. et al. β3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J. Clin. Invest. 103, 229–238 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pullen, S.S. et al. High-affinity interactions of tumor necrosis factor receptor-associated factors (TRAFs) and CD40 require TRAF trimerization and CD40 multimerization. Biochemistry 38, 10168–10177 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Andre, P. et al. Platelets adhere to and translocate on von Willebrand factor presented by endothelium in stimulated veins. Blood 96, 3322–3328 (2000).

    CAS  PubMed  Google Scholar 

  34. Andre, P. et al. Optimal antagonism of GPIIb/IIIa favors platelet adhesion by inhibiting thrombus growth. An ex vivo capillary perfusion chamber study in the guinea pig. Arterioscler. Thromb. Vasc. Biol. 16, 56–63 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Sakariassen, K.S., Kuhn, H., Muggli, R. & Baumgartner, H.R. Growth and stability of thrombi in flowing citrated blood: assessment of platelet-surface interactions with computer-assisted morphometry. Thromb. Haemost. 60, 392–398 (1988).

    Article  CAS  PubMed  Google Scholar 

  36. Phillips, D.R. & Agin, P.P. Platelet membrane defects in Glanzmann's thrombasthenia. Evidence for decreased amounts of two major glycoproteins. J. Clin. Invest. 60, 535–545 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Cowan for help with the preparation of the manuscript. Supported in part by National Heart, Lung and Blood Institute of the National Institutes of Health grants P01 HL56949 and R37 HL41002 (to D.D.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denisa D. Wagner.

Ethics declarations

Competing interests

D.P., K.S.S.P. and M.H. are employees of COR Therapeutics. P.A. became an employee of COR Therapeutics after completion of study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

André, P., Prasad, K., Denis, C. et al. CD40L stabilizes arterial thrombi by a β3 integrin–dependent mechanism. Nat Med 8, 247–252 (2002). https://doi.org/10.1038/nm0302-247

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0302-247

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing