Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ORP150 protects against hypoxia/ischemia-induced neuronal death

Abstract

Oxygen-regulated protein 150 kD (ORP150) is a novel endoplasmic-reticulum–associated chaperone induced by hypoxia/ischemia. Although ORP150 was sparingly upregulated in neurons from human brain undergoing ischemic stress, there was robust induction in astrocytes. Cultured neurons overexpressing ORP150 were resistant to hypoxemic stress, whereas astrocytes with inhibited ORP150 expression were more vulnerable. Mice with targeted neuronal overexpression of ORP150 had smaller strokes compared with controls. Neurons with increased ORP150 demonstrated suppressed caspase-3–like activity and enhanced brain-derived neurotrophic factor (BDNF) under hypoxia signaling. These data indicate that ORP150 is an integral participant in ischemic cytoprotective pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of ORP150 in ischemic brain from patients with cerebral infarction.
Figure 2: Expression of ORP150 and cell death under hypoxia in cultured neurons and astrocytes.
Figure 3: Expression of ORP150 rescues cells from hypoxia-induced cytotoxicity.
Figure 4: Overexpression of ORP150 has no effect on neuronal death induced by SNP, hydrogen peroxide or staurosporine (□, control; ▪, AxORP150S; ░, AxLacZ).
Figure 5: Neuroprotective properties of ORP150 in transgenic mice.
Figure 6: ORP150 modulates secretion of BDNF.

Similar content being viewed by others

References

  1. Pelham, H.R. Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46, 959–961 (1986).

    Article  CAS  Google Scholar 

  2. Frei, K. et al. On the cellular source and function of interleukin 6 produced in the central nervous system in viral diseases. Eur. J. Immunol. 19, 689–695 (1989).

    Article  CAS  Google Scholar 

  3. Coyle, J.T. & Puttfarchen, P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689–695 (1993).

    Article  CAS  Google Scholar 

  4. Szaflarski, J., Burtrum, D. & Silverstein, F.S. Cerebral hypoxia-ischemia stimulates cytokine gene expression in perinatal rats. Stroke 26, 1093–1100 (1995).

    Article  CAS  Google Scholar 

  5. Kuwabara, K. et al. Purification and characterization of a novel stress protein, the 150 kDa oxygen-regulated protein (ORP150), from cultured rat astrocytes and its expression in ischemic mouse brain. J. Biol. Chem. 271, 5025–5032 (1996).

    Article  CAS  Google Scholar 

  6. Ozawa, K. et al. 150-kDa Oxygen-regulated protein (ORP150) suppresses hypoxia-induced apoptotic cell death. J. Biol. Chem. 274, 6397–6404 (1999).

    Article  CAS  Google Scholar 

  7. Tamatani, M., Ogawa, S. & Tohyama, M. Roles of Bcl-2 and caspases in hypoxia-induced neuronal cell death: a possible neuroprotective mechanism of peptide growth factors. Mol. Brain Res. 58, 27–39 (1998).

    Article  CAS  Google Scholar 

  8. Sasahara, M. et al. PDGF B-chain in neurons of the central nervous system, posterior pituitary, and in a transgenic model. Cell 64, 217–227 (1991).

    Article  CAS  Google Scholar 

  9. Larsson, E., Nanobashvili, A., Kokaia, Z. & Lindvall, O. Evidence for neuroprotective effects of endogenous brain-derived neurotrophic factor after global forebrain ischemia in rats. J. Cereb. Blood Flow Metab. 19, 1220–1228 (1999).

    Article  CAS  Google Scholar 

  10. Bergeron, J.J., Brenner, M.B., Thomas, D.Y. & Williams, D.B. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem. Sci. 19, 124–128 (1994).

    Article  CAS  Google Scholar 

  11. Bredesen, D.E. Neuronal apoptosis. Ann. Neurol. 38, 839–851 (1995).

    Article  CAS  Google Scholar 

  12. Koistinaho, J. & Hokfelt, T. Altered gene expression in brain ischemia. Neuroreport 8, 1–8 (1997).

    Google Scholar 

  13. Linnik, M.D., Zobrist, R.H. & Hatfield, M.D. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke 24, 2002–2008 (1993).

    Article  CAS  Google Scholar 

  14. Gillardon, F., Lenz, C., Kuschinsky, W. & Zimmermann, M. Evidence for apoptotic cell death in the choroid plexus following focal cerebral ischemia. Neurosci. Lett. 207, 113–116 (1996).

    Article  CAS  Google Scholar 

  15. Namura, S. et al. Activation of cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J. Neurosci. 18, 3659–3668 (1998).

    Article  CAS  Google Scholar 

  16. Du, C. et al. Additive neuroprotective effects of dextrorphan and cycloheximide in rats subjected to transient focal cerebral ischemia. Brain Res. 718, 233–236 (1996).

    Article  CAS  Google Scholar 

  17. Fujimura, M. et al. Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome C and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. J. Neurosci. 19, 3414–3422 (1999).

    Article  CAS  Google Scholar 

  18. Chen, J. et al. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J. Neurosci. 18, 4914–4928 (1998).

    Article  CAS  Google Scholar 

  19. Perez-Pinzon, M.A. et al. Cytochrome c is released from mitochondria into the cytosol after cerebral anoxia or ischemia. J. Cereb. Blood Flow Metab. 19, 39–43 (1999).

    Article  CAS  Google Scholar 

  20. Li, F. et al. Cell-specific induction of apoptosis by microinjection of cytochrome c. Bcl-XL has activity independent of cytochrome c release. J. Biol. Chem. 272, 30299–30305 (1997).

    Article  CAS  Google Scholar 

  21. Pahl, H.L. & Baeuerle P.A. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-κB. EMBO J. 14, 2580–2588 (1995).

    Article  CAS  Google Scholar 

  22. Despres, P., Frenkiel, M.P., Ceccaldi, P.E., Duarte, D.S.C. & Deubel, V. Apoptosis in the mouse central nervous system in response to infection with mouse-neurovirulent dengue viruses. J. Virol. 70, 4090–4096 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakagawa, T. et al. Caspase-12 mediates endoplasmic reticulum-specific apoptosis and cytotoxicity by amyloid-b. Nature 403, 98–103 (2000).

    Article  CAS  Google Scholar 

  24. Lindvall, O. et al. Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma. Proc. Natl. Acad. Sci. USA. 89, 648–652 (1992).

    Article  CAS  Google Scholar 

  25. Ihara, K. et al. Platelet-derived growth factor-BB, but not -AA, prevents delayed neuronal death after forebrain ischemia in rats. J. Cereb. Blood Flow Metab. 17, 1097–1106 (1997).

    Article  Google Scholar 

  26. Abe, K. & Hayashi, T. Expression of the glial cell line-derived neurotrophic factor gene in rat brain after transient MCA occlusion. Brain Res. 776, 230–234 (1997).

    Article  CAS  Google Scholar 

  27. Hori, O. et al. Exposure of astrocytes to hypoxia/reoxygenation enhances expression of glucose-regulated protein 78 facilitating astrocyte release of the neuroprotective cytokine interleukin 6. J. Neurochem. 66, 973–979 (1996).

    Article  CAS  Google Scholar 

  28. Tamatani, M. et al. Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFkB activation in primary hippocampal neurons. J. Biol. Chem. 274, 8531–8538 (1999).

    Article  CAS  Google Scholar 

  29. Ogawa, S. et al. Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium. J. Clin. Invest. 85, 1090–1098 (1990).

    Article  CAS  Google Scholar 

  30. Miyake, S. et al. Efficient generation of recombinant adenovirus using adnovirus DNA-terminal protein complex and a cosmid bearing the full-length virus genome. Proc. Natl. Acad. Sci. USA 93, 1320–1324 (1996).

    Article  CAS  Google Scholar 

  31. Longa, E.Z., Weinstein, P.R., Carlson, S. & Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20, 84–91 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Saito for providing AxCANLZ and Y. Hara for technical assistance. This work was supported by Inamori Foundation and CREST of Japan Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michio Tamatani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamatani, M., Matsuyama, T., Yamaguchi, A. et al. ORP150 protects against hypoxia/ischemia-induced neuronal death. Nat Med 7, 317–323 (2001). https://doi.org/10.1038/85463

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85463

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing