Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: correction of neuropathology and protection against learning impairments in affected mice

Abstract

Metachromatic leukodystrophy (MLD) is a lipidosis caused by deficiency of arylsulfatase A (ARSA). Although the genetics of MLD are known, its pathophysiology is not understood. The disease leads to progressive demyelination and early death and no effective treatment is available. We used lentiviral vectors to deliver a functional ARSA gene (human ARSA) into the brain of adult mice with germ-line inactivation of the mouse gene encoding ARSA, As2. We report sustained expression of active enzyme throughout a large portion of the brain, with long-term protection from development of neuropathology and hippocampal-related learning impairments. We show that selective degeneration of hippocampal neurons is a central step in disease pathogenesis, and provide evidence that in vivo transfer of ARSA by lentiviral vectors reverts the disease phenotype in all investigated areas. Therefore, in vivo gene therapy offers a unique option for MLD and other storage diseases affecting the central nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The MLD gene therapy model.
Figure 2: Intracranial vector administration and transduction of CNS cells.
Figure 3: Rescue of histopathology in MLD mice treated by ARSA gene transfer into the brain.
Figure 4: The therapeutic activity of ARSA gene transfer extends to the uninjected, contralateral side of the brain with longer time after treatment with ARSA vector.
Figure 5: Reconstitution of ARSA activity in the brains of MLD mice.
Figure 6: Long-term protection from learning impairment, neuronal damage and lipid storage in MLD mice treated by ARSA vector.

Similar content being viewed by others

References

  1. Kolodney, E.H. & Fluharty A.L. Metachromatic Leukodistrophy and multiple sulfatase deficiency: Sulfatide lipidosis. in The Metabolic and Molecular Bases of Inherited Disease 6th edn. (eds. Scriver, C.R., Beaudet, A.L, Sly W.S. & Valle, D.) 2693–7391 (McGraw-Hill, New York, 1995).

    Google Scholar 

  2. Neufeld, E.F. Lysosomal disease. Annu. Rev. Biochem 60, 257–280 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Kapaun, P. et al. A slow progression of juvenile metachromatic leukodystrophy 6 years after bone marrow transplantation. J. Child Neurol. 14, 222–228 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Krivit, W., Peters, C. & Shapiro, E.G. Bone marrow transplantation as effective treatment of central nervous system disease in globoid cell leukodystrophy, metachromatic leukodystrophy, adrenoleukodystrophy, mannosidosis, fucosidosis, aspartylglucosaminuria, Hurler, Maroteaux-Lamy, and Sly syndromes, and Gaucher disease type III. Curr. Opin. Neurol. 12, 167–176 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Ohashi, T., Eto, Y., Learish, R. & Barranger, J.A. Correction of enzyme deficiency in metachromatic leukodystrophy fibroblasts by retroviral-mediated transfer of the human arylsulphatase A gene. J. Inherit. Metab. Dis. 16, 881–885 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Learish, R. et al. Retroviral gene transfer and sustained expression of human arylsulfatase A. Gene. Ther. 3, 343–349 (1996).

    CAS  PubMed  Google Scholar 

  7. Sangalli, A. et al. Transduced fibroblasts and metachromatic leukodystrophy lymphocytes transfer arylsulfatase A to myelinating glia and deficient cells in vitro. Hum. Gene. Ther. 9, 2111–2119 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Penzien, J.M. et al. Compound heterozygosity for metachromatic leukodystrophy and arylsulfatase A pseudodeficiency alleles is not associated with progressive neurological disease. Am. J. Hum. Genet. 52, 557–564 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Leinekugel, P., Michel, S., Conzelmann, E. & Sandhoff, K. Quantitative correlation between the residual activity of β-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum. Genet. 88, 513–523 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Hess, B. et al. Phenotype of arylsulfatase A-deficient mice: relationship to human metachromatic leukodystrophy. Proc. Natl. Acad. Sci. USA 93, 14821–14826 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gieselmann, V. et al. Metachromatic leukodystrophy: molecular genetics and an animal model. J. Inherit. Metab. Dis. 21, 564–574 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Naldini, L., Blomer, U., Gage, F.H., Trono, D. & Verma, I.M. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA 93, 11382–11388 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stein, C. et al. Cloning and expression of human arylsulfatase A. J. Biol. Chem. 264, 1252–1259 (1989).

    CAS  PubMed  Google Scholar 

  15. Kreysing, J. et al. Structure of the mouse arylsulfatase A gene and cDNA. Genomics 19, 249–256 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Zufferey, R. et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72, 9873–9880 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zufferey, R., Donello, J.E., Trono, D. & Hope, T.J. Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 73, 2886–2892 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Deglon, N. et al. Self-inactivating lentiviral vectors with enhanced transgene expression as potential gene transfer system in Parkinson's disease. Hum. Gene Ther. 11, 179–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Zufferey, R., Nagy, D., Mandel, R.J., Naldini, L. & Trono, D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nature Biotechnol. 15, 871–875 (1997).

    Article  CAS  Google Scholar 

  20. Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Monti, E. et al. Uptake and metabolism of a fluorescent sulfatide analogue in cultured skin fibroblasts. Biochim. Biophys. Acta 1124, 80–87 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Olton, D.S., Walker, J.A. & Gage, F.H. Hippocampal connections and spatial discrimination. Brain Res. 139, 215–308 (1978).

    Article  Google Scholar 

  23. Brambilla, R. et al. A role for the Ras signaling pathway in synaptic transmission and long-term memory. Nature 390, 281–286 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Minichiello, L. et al. Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 24, 401–414 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Cestari, V., Mele, A., Oliverio, A. & Castellano, C. Amygdala lesions block the effect of cocaine on memory in mice. Brain Research 713, 286–289 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Rogan, M.T., Stäubli, U.V. & LeDoux, J.E. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390, 604–607 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Kempermann, G., Kuhn, H.G. & Gage, F.H. More hippocampal neurons in adult mice living in an enriched evironment. Nature 386, 493–495 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Gould, E. et al. Hippocampal neurogenesis in adult Old World primates. Proc. Natl. Acad. Sci. USA 96, 5263–5267 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nemni, R. et al. Effect of chronic tratment with recombinant inerleukin-2 on the central nervous system of adult and old mice. Brain. Res. 591, 248–252 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Venters, H.D. et al. A new mechanism of neurodegeneration: a proinflammatory cytokine inhibits receptor signaling by a survival peptide. Proc. Natl. Acad. Sci. USA 96, 9879–9884 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kolesnick, R.N. & Kronke, M. Regulation of ceramide production and apoptosis. Ann. Rev. Physiol. 60, 643–665 (1998).

    Article  CAS  Google Scholar 

  32. D'Hooge, R., Coenen, R., Gieselmann, V., Lullmann-Rauch, R. & De Deyn, P.P. Decline in brainstem auditory-evoked potentials coincides with loss of spiral ganglion cells in arylsulfatase A-deficient mice. Brain Res. 847, 352–356 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. D'Hooge, R. et al. Neuromotor alterations and cerebellar deficits in aged arylsulfatase A-deficient transgenic mice. Neurosci. Lett. 273, 93–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Sands, M.S. et al. Enzyme replacement therapy for murine mucopolysaccharidosis type VII. J. Clin. Invest. 93, 2324–2231 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O'Connor, L.H. et al. Enzyme replacement therapy for murine mucopolysaccharidosis type VII leads to improvements in behavior and auditory function. J. Clin. Invest. 101, 1394–1400 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taylor, R.M. & Woolfe, J.H. Decreased lysosomal storage in the adult MPS VII mouse brain in the vicinity of grafts of retroviral vector-corrected fibroblasts secreting high levels of β-glucuronidase. Nature Med. 3, 771–774 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Ohashi, T. et al. Adenovirus-mediated gene transfer and expression of human β-glucuronidase gene in the liver, spleen, and central nervous system in mucopolysaccharidosis type VII mice. Proc. Natl. Acad. Sci. USA 94, 1287–1292 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bosch, A., Perret, E., Desmaris, N. & Heard, J.M. Long-term and significant correction of brain lesions in adult mucopolysaccharidosis Type VII mice using recombinant AAV vectors. Mol. Ther. 1, 63–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Baum, J., Dodgson, K.S. & Spencer, B. The assay of arylsulfatase A and B in human urine. Clin. Chim. Acta 4, 453–455 (1959).

    Article  CAS  PubMed  Google Scholar 

  40. Ferraresi, S. et al. Toward a transgenic mouse model of remyelination. Mult. Scler. 3, 80–83 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Papaioannou, V.E & Fox, J.G. Efficacy of tribromoethanol anesthesia in mice. Lab. Anim. Sci. 43,189–192 (1993).

    CAS  PubMed  Google Scholar 

  42. Viani, P., Marchesini, S., Cestaro, B. & Gatt, S. Correlation of the dispersion state of pyrene cerebroside sulfate and its uptake and degradation by cultured cells. Biochim. Biophys. Acta 1002, 20–27 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. McGaugh, J.L. & Landfield, P.W. Delayed development of amnesia following electroconvulsive shock. Physiol. Behav. 5, 1109–1113 (1970).

    Article  CAS  PubMed  Google Scholar 

  44. Vos, J.P. et al. Cultured oligodendrocytes metabolize a fluorescent analogue of sulphatide; inhibition by monensin. Biochim. Biophys. Acta 1126, 269–276 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Marchesini, S. et al. Synthesis, spectral properties and enzymatic hydrolysis of fluorescent derivatives of cerebroside sulfate containing long-wavelength-emission probes. Chem. Phys. Lipids 53, 165–175 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Gieselmann for providing the As2−/− founder mice and for discussions on the model; T. Dull, M. Kelly and A. Follenzi for help with vector construction and production; G. Cusella for help with histology; U. Matzner for the hARSA antibody and suggestions for the immunocapture assay; and L. Wrabetz, A. Malgaroli, R. Brambilla and A. Mallamaci for helpful comments and critical reading of the manuscript. This work was supported by grants form Telethon, Italy, and from the Associazione Malattie Rare Mauro Baschirotto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Bordignon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Consiglio, A., Quattrini, A., Martino, S. et al. In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: correction of neuropathology and protection against learning impairments in affected mice. Nat Med 7, 310–316 (2001). https://doi.org/10.1038/85454

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85454

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing