Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A T cell-independent antitumor response in mice with bone marrow cells retrovirally transduced with an antibody/Fc-γ chain chimeric receptor gene recognizing a human ovarian cancer antigen

Abstract

In order to treat common cancers with immunotherapy, chimeric receptors have been developed that combine the tumor specificity of antibodies with T-cell effector functions. Previously, we demonstrated that T cells transduced with a chimeric receptor gene against human ovarian cancer were able to recognize ovarian cancer cells in vitro and in vivo. We now report that recipients of bone marrow cells transduced with these genes exhibited significant antitumor activity in vivo. Moreover, in vivo depletion of T cells in reconstituted mice did not affect antitumor activity, suggesting that other immune cells expressing the chimeric receptor gene may play an important role in tumor rejection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rosenberg, S.A. Immunotherapy and gene therapy of cancer. Cancer Res. (Suppl.) 51, 5074S–5079S (1991).

    CAS  PubMed  Google Scholar 

  2. Rosenberg, S.A. Gene therapy for cancer. JAMA 268, 2416–2419 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Rosenberg, S.A. et al. Treatment of patients with metastatic melanoma with autol-ogous tumor-infiltrating lymphocytes and interleukin 2. J. Natl. Cancer Inst. 86, 1159–1161 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Eshhar, Z. & Gross, G. Chimeric T cell receptor which incorporates the anti-tumor specificity of a monoclonal antibody with the cytolytic activity of T cells: A model system for immunotherapeutical approach. Br.J. Cancer 62 (Suppl. 10), 27–29 (1990).

    Google Scholar 

  5. Gross, G. & Eshhar, Z. Endowing T cells with antibody specificity using chimeric T cell receptors. FASEB J. 6, 3370–3378 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Hwu, P. et al. Lysis of ovarian cancer cells by human lymphocytes redirected with a chimeric gene composed of an antibody variable region and the Fc receptor gamma chain. J. Exp. Med. 178, 361–366 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Eshhar, Z., Waks, T., Gross, G. & Schindler, D.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the γ or ξ subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA 90, 720–724 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hwu, P. et al. In vivo antitumor activity of T cells redirected with chimeric anti-body/T-cell receptor genes. Cancer Res. 55, 3369–3373 (1995).

    CAS  PubMed  Google Scholar 

  9. Royal, R.E., Daly, T., Rosenberg, S.A. & Hwu, P. Specific immune recognition of gastrointestinal cancer by lymphocytes expressing a chimeric T-cell receptor. Proc. Am. Assoc Cancer Res. 37, 481 (1996).

    Google Scholar 

  10. Roberts, M.R. et al. Targeting of human immunodeficiency virus-infected cells by CD8+ T lymphocytes armed with universal T-cell receptors. Blood 84, 2878–2889 (1994).

    CAS  PubMed  Google Scholar 

  11. Walker, R.E. et al. A phase I/II pilot study of the safety of the adoptive transfer of syngeneic gene-modified cytotoxic T lymphocytes in HIV-infected identical twins. Hum. Gene Ther. 7, 367–400 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Tran, A.-C., Zhang, D., Bym, R. & Roberts, M.R. Chimeric ζ-receptors direct human natural killer (NK) effector function to permit killing of NK-resistant tumor cells and HIV-infected T lymphocytes. J. Immunol. 155, 1000–1009 (1995).

    CAS  PubMed  Google Scholar 

  13. Moritz, D., Wels, W., Mattern, J. & Broner, B. Cytotoxic T lymphocytes with a grafted recognition specificity for ErbB2-expressing tumor cells. Proc. Natl. Acad. Sci. USA 91, 4318–4322 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wels, W. et al. Biotechnological and gene therapeutic strategies in cancer treatment. Gene 159, 73–80 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Orloff, D.G., Ra, C.S., Frank, S.J., Klausner, R.D. & Kinet, J.R. Family of disulphide-linked dimers containing the zeta and eta chains of the T-cell receptor and the gamma chain of Fc receptor. Nature 347, 189–191 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Miotti, S. et al. Characterization of human ovarian carcinoma-associated antigens defined by novel monoclonal antibodies with tumor-restricted specificity. Int. J. Cancer 39, 297–303 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Coney, L.R. et al. Cloning of a tumor-associated antigen: MOv18 and MOvi 9 antibodies recognize a folate-binding protein. Cancer Res. 51, 6125–6132 (1991).

    CAS  PubMed  Google Scholar 

  18. Shiloni, E. et al. Retroviral transduction of interferon-gamma cDNA into a nonim-munogenic murine fibrosarcoma: Generation of T cells in draining lymph nodes capable of treating established parental metastatic tumor. Cancer Immunol. Immunother. 37, 286–292 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karp, S.E. et al. Cytokine secretion by genetically modified nonimmunogenic murine fibrosarcoma. Tumor inhibition by IL-2 but not tumor necrosis factor. J. Immunol. 150, 896–908 (1993).

    CAS  PubMed  Google Scholar 

  20. Palmer, T.D., Rosman, G.J., Osborne, W.R.A. & Miller, A.D. Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proc. Natl. Acad. Sci. USA 88, 1330–1334 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brocker, T. & Karjalainen, K. Signals through T cell receptor γ chain alone are insufficient to prime resting T lymphocytes. J. Exp. Med. 181, 1653–1659 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Pardoll, D.M. et. al. Thymus-dependent and thymus-independent developmental pathways for peripheral T cell receptor-bearing lymphocytes. J. Immunol. 140, 4091–4096 (1988).

    CAS  PubMed  Google Scholar 

  23. Miller, A.D. & Rosman, G.J. Improved retroviral vectors for gene transfer and expression. Biotechniques 7, 980-982, 984-986, 989–990 (1989).

    Google Scholar 

  24. Hoatlin, M.E., Kozak, S.L., Spiro, C. & Kabat, D. Amplified and tissue-directed expression of retroviral vectors using ping-pong techniques. J. Mol. Med. 73, 113–120 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Bodine, D.M., Karlsson, S. & Neinhuis, A.W. Combination of interleukins 3 and 6 preserves stem cell function in culture and enhances retrovirus-mediated gene transfer into hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 86, 8897–8901 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Orlic, D. & Bodine, D.M. What defines a pluripotent hematopoietic stem cell (PHSC): Will the real PHSC please stand up! Blood 84, 3991–3994 (1994).

    CAS  PubMed  Google Scholar 

  27. Jordan, C.T. & Lemischka, I.R. Clonal and systemic analysis of long-term hematopoiesis in the mouse. Genes Dev. 4, 220–232 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Sorrentino, B.P. et al. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science 257, 99–103 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Sykes, M. et al. Specific prolongation of skin graft survival following retroviral transduction of bone marrow with an allogeneic major histocompatibility complex gene. Transplantation 55, 197–202 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Kruisbeek, A.M. In vivo depletion of CD4- and CD8-specific T cells, in Current Protocols in Immunology, (eds. Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, EM. & Strober, W.) 4.1.1–4.1.5 (Wiley and Sons, New York, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Chopra, R., Royal, R. et al. A T cell-independent antitumor response in mice with bone marrow cells retrovirally transduced with an antibody/Fc-γ chain chimeric receptor gene recognizing a human ovarian cancer antigen. Nat Med 4, 168–172 (1998). https://doi.org/10.1038/nm0298-168

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0298-168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing