Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

T–cell mediated rejection of gene–modified HIV–specific cytotoxic T lymphocytes in HIV–infected patients

Abstract

The introduction and expression of genes in somatic cells is an innovative therapy for correcting genetic deficiency diseases and augmenting immune function. A potential obstacle to gene therapy is the elimination of such gene–modified cells by an immune response to novel protein products of the introduced genes. We are conducting an immunotherapy trial in which individuals seropositive for human immunodeficiency virus (HIV) receive CD8+ HIV–specific cytotoxic T cells modified by retroviral transduction to express a gene permitting positive and negative selection. However, five of six subjects developed cytotoxic T–lymphocyte responses specific for the novel protein and eliminated the transduced cytotoxic T cells. The rejection of genetically modified cells by these immunocompromised hosts suggests that strategies to render gene–modified cells less susceptible to host immune surveillance will be required for successful gene therapy of immunocompetent hosts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, A.D. Human gene therapy comes of age. Nature 357, 455–460 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Anderson, W.F. Human gene therapy. Science 256, 808–813 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Yang, Y. et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc. Natl. Acad. Sci. USA 91, 4407–4411 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang, Y. et al. Inactivation of E2a in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis. Nature Genet. 7, 362–369 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Simon, R.H. et al. Adenovirus-mediated transfer of the CFTR gene to lung of nonhuman primates: Toxicity study. Hum. Gene Ther. 4, 771–780 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Yei, S.P., Mittereder, N., Tang, K., O'Sullivan, C. & Trapnell, B.C. Adenovirus-mediated gene transfer for cystic fibrosis — quantitative evaluation of repeated in vivo vector administration to the lung. Gene Ther. 1, 192–200 (1994).

    CAS  PubMed  Google Scholar 

  7. Yang, Y., Li, Q., Ertl, H.C. & Wilson, J.M. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J. Virol. 69, 2004–2015 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dai, Y. et al. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: Tolerization of factor IX and vector antigens allows for long-term expression. Proc. Natl. Acad. Sci. USA 92, 1401–1405 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zsengeller, Z.K. et al. Persistence of replication-deficient adenovirus-mediated gene transfer in lungs of immune-deficient (nu/nu) mice. Hum. Gene Ther. 6, 457–467 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Brody, S.L., Metzger, M., Danel, C., Rosenfeld, M.A. & Crystal, R.G. Acute responses of nonhuman primates to airway delivery of an adenovirus vector containing the human cystic fibrosis transmembrane conductance regulator cDNA. Hum. Gene Ther. 5, 821–836 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Crystal, R.G. et al. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nature Genet. 8, 42–51 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Ulmer, J.B. et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745–1749 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Michel, M.L. et al. DNA-mediated immunization to the hepatitis B surface antigen in mice: Aspects of the humoral response mimic hepatitis B viral infection in humans. Proc. Natl. Acad. Sci. USA 92, 5307–5311 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raz, E. et al. Intradermal gene immunization: The possible role of DNA uptake in the induction of Cellular immunity to viruses. Proc. Natl. Acad. Sci. USA 91, 9519–9523 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dai, Y., Roman, M., Naviaux, R.K. & Verma, I.M. Gene therapy via primary myoblasts: Long-term expression of factor IX protein following transplantation in vivo. Proc. Natl. Acad. Sci. USA 89, 10892–10895 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Palmer, T.D., Rosman, G.J., Osborne, W.R. & Miller, A.D. Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proc. Natl. Acad. Sci. USA 88, 1330–1334 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Culver, K.W. et al. In vivo expression and survival of gene-modified T lymphocytes in rhesus monkeys. Hum. Gene Ther. 1, 399–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. van Beusechem, V.W., Kukler, A., Heidt, P.J. & Valerio, D. Long-term expression of human adenosine deaminase in rhesus monkeys transplanted with retrovirus-infected bone-marrow Cells. Proc. Natl. Acad. Sci. USA 89, 7640–7644 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rosenberg, S.A. et al. Gene transfer into humans — immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med. 323, 570–578 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Merrouche, Y. et al. Clinical application of retroviral gene transfer in oncology: Results of a French study with tumor-infiltrating lymphocytes transduced with the gene of resistance to neomycin. J. Clin. Oncol. 13, 410–418 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Blaese, R.M. et al. Treatment of severe combined immunodeficiency disease (SCID) due to adenosine deaminase deficiency with CD34+ selected autologous peripheral blood cells transduced with a human ADA gene. Amendment to clinical research project, Project 90-C-195, January 10, 1992. Hum. Gene Ther. 4, 521–527 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Rooney, C.M. et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 345, 9–13 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Brenner, M.K. et al. Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet 341, 85–86 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Brenner, M.K. et al. Gene marking to determine whether autologous marrow infusion restores long-term haemopoiesis in cancer patients. Lancet 342, 1134–1137 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Deisseroth, A.B. et al. Genetic marking shows that Ph+ cells present in autologous transplants of chronic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML. Blood 83, 3068–3076 (1994).

    CAS  PubMed  Google Scholar 

  26. Kohn, D.B. et al. Engraftment of gene-modified umbilical cord blood Cells in neonates with adenosine deaminase deficiency. Nature Med. 1, 1017–1023 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Riddell, S.R. & Greenberg, P.D. Principles for adoptive T Cell therapy of human viral diseases. Annu. Rev. Immunol. 13, 545–586 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Riddell, S.R. et al. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T Cell clones. Science 257, 238–241 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Walter, E.A. et al. Reconstitution of Cellular immunity against CMV in recipients of allogeneic bone marrow by adoptive transfer of T Cell clones from the donor. N. Engl. J. Med. 333, 1038–1044 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Koup, R.A. et al. Temporal association of Cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Viral. 68, 4650–4655 (1994).

    CAS  Google Scholar 

  31. Klein, M.R. et al. Kinetics of gag-specific cytotoxic T lymphocyte responses during the clinical course of HIV-1 infection: A longitudinal analysis of rapid progressors and long-term asymptomatics. J. Exp. Med. 181, 1365–1372 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Carmichael, A., Jin, X., Sissons, P. & Borysiewicz, L. Quantitative analysis of the human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T lymphocyte (CTL) response at different stages of HIV-1 infection: Differential CTL responses to HIV-1 and Epstein-Barr virus in late disease. J. Exp. Med. 177, 249–256 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Borrow, P., Lewicki, H., Hahn, B.H., Shaw, G.M. & Oldstone, M.B. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J. Virol. 68, 6103–6110 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Koenig, S. et al. Transfer of HIV-1-specific cytotoxic T lymphocytes to an AIDS patient leads to selection of mutant HIV variants and subsequent disease progression. Nature Med. 1, 330–336 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Baenziger, J., Hengartner, H., Zinkernagel, R.M. & Cole, G.A. Induction or prevention of immunopathological disease by cloned cytotoxic T cell lines specific for lymphocytic choriomeningitis virus. Eur. J. Immunol. 16, 387–393 (1986).

    Article  CAS  PubMed  Google Scholar 

  36. Matloubian, M., Concepcion, R.J. & Ahmed, R. CD4+ T Cells are required to sustain CD8+ cytotoxic T-Cell responses during chronic viral infection. J. Virol. 68, 8056–8063 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lupton, S.D., Brunton, L.L., Kalberg, V.A. & Overell, R.W. Dominant positive and negative selection using a hygromycin phosphotransferase-thymidine kinase fusion gene. Mol. Cell Biol. 11, 3374–3378 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Borrelli, E., Heyman, R., Hsi, M. & Evans, R.M. Targeting of an inducible toxic phenotype in animal Cells. Proc. Natl. Acad. Sci. USA 85, 7572–7576 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harty, J.T. & Bevan, M.J. CD8+ T Cells specific for a single nonamer epitope of Listeria monocytogenes are protective in vivo. J. Exp. Med. 175, 1531–1538 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Tigges, M.A. et al. Human CD8+ herpes simplex virus-specific cytotoxic T-lymphocyte clones recognize diverse virion protein antigens. J. Virol. 66, 1622–1634 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. von Boehmer, H. & Kisielow, P. Self-nonself discrimination by T Cells. Science 248, 1369–1373 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Dranoff, G. & Mulligan, R.C. Gene transfer as cancer therapy. Adv. Immunol. 58, 417–454 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, L. et al. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71, 1093–1102 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Townsend, S.E. & Allison, J.P. Tumor rejection after direct costimulation of CD8+ T Cells by B7-transfected melanoma Cells. Science 259, 368–370 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Yang, Y.P., Trinchieri, G. & Wilson, J.M. Recombinant IL-12 prevents formation of blocking IgA antibodies to recombinant adenovirus and allows repeated gene therapy to mouse lung. Nature Med. 1, 890–893 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. York, I.A. et al. A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 77, 525–535 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Fruh, K. et al. A viral inhibitor of peptide transporters for antigen presentation. Nature 375, 415–418 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Hill, A. et al. Herpes simplex virus turns off the TAP to evade host immunity. Nature 375, 411–415 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Riddell, S.R. & Greenberg, P.D. The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T Cells. J. Immunol. Methods 128, 189–201 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Riddell, S.R. et al. Phase 1 study of Cellular adoptive immunotherapy using genetically modified CD8+ HIV-specific T Cells for HIV seropositive patients undergoing allogeneic bone marrow transplant. Hum. Gene Ther. 3, 319–338 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Strijbosch, L.W., Buurman, W.A., Does, R.J., Zinken, P.H. & Groenewegen, G. Limiting dilution assays. Experimental design and statistical analysis. J. Immunol. Methods 97, 133–140 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riddell, S., Elliott, M., Lewinsohn, D. et al. T–cell mediated rejection of gene–modified HIV–specific cytotoxic T lymphocytes in HIV–infected patients. Nat Med 2, 216–223 (1996). https://doi.org/10.1038/nm0296-216

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0296-216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing