Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Primary intestinal epithelial cells selectively transfer R5 HIV-1 to CCR5+ cells

Abstract

The upper gastrointestinal tract is a principal route of HIV-1 entry in vertical transmission and after oral–genital contact. The phenotype of the newly acquired virus is predominantly R5 (CCR5-tropic) and not X4 (CXCR4-tropic), although both R5 and X4 viruses are frequently inoculated onto the mucosa. Here we show that primary intestinal (jejunal) epithelial cells express galactosylceramide, an alternative primary receptor for HIV-1, and CCR5 but not CXCR4. Moreover, we show that intestinal epithelial cells transfer R5, but not X4, viruses to CCR5+ indicator cells, which can efficiently replicate and amplify virus expression. Transfer was remarkably efficient and was not inhibited by the fusion blocker T-20, but was substantially reduced by colchicine and low (4 °C) temperature, suggesting endocytotic uptake and microtubule-dependent transcytosis of HIV-1. Our finding that CCR5+ intestinal epithelial cells select and transfer exclusively R5 viruses indicates a mechanism for the selective transmission of R5 HIV-1 in primary infection acquired through the upper gastrointestinal tract.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of primary IECs isolated by neutral protease from jejunal mucosa.
Figure 2: IECs express GalCer and CCR5, but not CXCR4.
Figure 3: IECs do not express SDF-1.
Figure 4: IECs preferentially transfer R5 virus to indicator cells.
Figure 5: Direct relationship between the duration of IEC–indicator-cell contact and HIV-1 production.
Figure 6: Sequence of gp41 and V3 regions of indicator-cell output virus was identical to input BaL but not IIIB HIV-1.

Similar content being viewed by others

References

  1. Smith, P.D. & Wahl, S.M. in Mucosal Immunology (eds. Ogra, P.H. et al.) 977–989 (Academic Press, San Diego, California, 1999).

    Google Scholar 

  2. Maayan, S. et al. Sexual behavior of homosexual and bisexual men attending an HIV testing clinic in Jerusalem 1986/7–1990. Isr. J. Psych. Rel. Sci. 30, 150–154 (1993).

    CAS  Google Scholar 

  3. Schwarcz, S.K. et al. Temporal trends in human immunodeficiency virus seroprevalence and sexual behavior at the San Francisco municipal sexually transmitted disease clinic, 1989–1992. Am. J. Epidemiol. 142, 314–322 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Schacker, T., Collier, A.C., Hughes, J., Shea, T. & Corey, L. Clinical and epidemiologic features of primary HIV infection. Ann. Intern. Med. 125, 257–264 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Bomsel, M. Transcysosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nature Med. 3, 42–47 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Bomsel, M. et al. Intracellular neutralization of HIV transcytosis across tight epithelial barriers by anti-HIV envelope protein dIgA or IgM. Immunity 9, 277–287 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Alfsen, A., Iniguez, P., Bouguyon, E. & Bomsel, M. Secretory IgA specific for a conserved epitope on gp41 envelope glycoprotein inhibits epithelial transcytosis of HIV-1. J. Immunol. 166, 6257–6265 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. McNearey, T., Hornickova, Z., Markham, R., Birdwell, A. & Arens, M. Relationship of human immunodeficiency virus type 1 sequence heterogenicity to stage of disease. Proc. Natl. Acad. Sci. USA 89, 10247–10251 (1992).

    Article  Google Scholar 

  9. Wolinsky, S.M. et al. Selective transmission of human immunodeficiency virus type-1 variants from mothers to infants. Science 255, 1134–1136 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Zhu, T. et al. Genotypic and phenotypic characterization of HIV-1 in patients with primary infection. Science 261, 1179–1181 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. van't Wout, A.B. et al. Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral, and vertical transmission. J. Clin. Invest. 94, 2060–2070 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pratt, R.D., Shapiro, J.F., McKinney, N., Kwok, S. & Spector, A. Virologic characterization of primary human immunodeficiency viarus type 1 infection in a health care worker following needlestick injury. J. Infect. Dis. 172, 851–854 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Li, L., Meng, G., Graham, M.F., Shaw, G.M. & Smith, P.D. Intestinal macrophages display reduced permissiveness to human immunodeficiency virus type 1 and decreased surface CCR5. Gastroenterology 116, 1043–1053 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Meng, G. Sellers, M.T., Rogers, T.S., Shaw, G.M. & Smith, P.D. Lamina propria lymphocytes, not macrophages, express CCR5 and CXCR4 and are the likely target cell for human immunodeficiency virus type 1 in the intestinal mucosa. J. Infect. Dis. 182, 785–791 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Smith, P.D., Fox, C.H., Masur, H., Winter, H.S. & Alling, D.W. Quantitative analysis of mononuclear cells expressing human immunodeficiency virus type 1 RNA in esophageal mucosa. J. Exp. Med. 180, 1541–1546 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Smith, P.D. et al. Isolation and purification of CD14-negative mucosal macrophages from normal human small intestine. J. Immunol. Meth. 202, 1–11 (1997).

    Article  CAS  Google Scholar 

  17. Wahl, L.M. & Smith, P.D. in Current Protocols in Immunology (eds. Coligan, J.E., Kruisbeek, A.M., Marguilies, D.H., Shevach, E.M. & Strober, W.) 7.6.1–7.6.8 (Wiley, New York, 1991).

    Google Scholar 

  18. Harouse, J.M. et al. Inhibition of entry of HIV-1 in neural cell lines by antibodies against galactosyl ceramide. Science 253, 320–323 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Fantini, J., Cook, D.G., Nathanson, N., Spitalnik, S.L. & Gonzalez-Scarano, F. Infection of colonic epithelial cell lines by type 1 human immunodeficiency virus (HIV-1) is associated with cell surface expression of galactosyl ceramide, a potential alternative gp 120 receptor. Proc. Natl. Acad. Sci. USA 90, 2700–2704 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Amara, A. et al. Stromal cell-derived factor-1α associates with heparan sulfates through the first β-strand of the chemokine. J. Biol. Chem. 274, 23916–23925 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Agace, W.W. et al. Constitutional expression of stomal derived factor-1 by mucosal epithelia and its role in HIV transmission and propagation. Curr. Biol. 10, 325–328 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Amara, A. et al. HIV coreceptor downregulation as antiviral principle: SDF-1-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. J. Exp. Med. 186, 139–146 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, Y. et al. Molecular characterization of human immunodeficiency virus type 1 cloned directly from uncultured human brain tissue: Identification of replication-competent and -defective viral genomes. J. Virol. 65, 3973–3985 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghosh, S.K. et al. A molecular clone of HIV-1 tropic and cytopathic for human and chimpanzee lymphocytes. Virology 194, 858–864 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Derdeyn, C.A. et al. Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J. Virol. 74, 8358–8367 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cecilia, D. et al. Neutralization profiles of primary human immunodeficiency virus type 1 isolates in the context of coreceptor usage. J. Virol. 72, 6988–6996 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dwinell, M.B., Eckmann, L., Leopard, J.D., Varki, N.M. & Kagnoff, M.F. Chemokine receptors expression by human intestinal epitheilial cells. Gastroenterology 117, 359–367 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Jordan, N.J. et al. Expression of functional CXCR4 chemokine receptors on human colonic epithelial cells. J. Clin. Invest. 104, 1061–1069 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lapenta, C. et al. Human intetinal lamina propria lymphocytes are naturally permissive to HIV-1 infection. Eur. J. Immunol. 29, 1202–1208 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Poles, M.A., Elliott, J., Taing, P., Anton, P.A. & Chen, I.S.Y. A preponderance of CCR5+ CXCR4+ mononuclear cells enhances gastrointestinal mucosal susceptibility to human immunodeficiency virus type 1 infection. J. Virol. 75, 8390–8399 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Phillips, D.M. The role of cell-to-cell transmission in HIV infection. AIDS 8, 719–731 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Dezutti, C.S. et al. Cervical and prostate primary epithelial cells are not productively infected but sequester human immunodeficiency virus type 1. J. Infect. Dis. 183, 1204–1213 (2001).

    Article  Google Scholar 

  33. Fantini, J., Yahi, N., Baghdiguian, S. & Chermann, J.-C. Human colon epithelial cells productively infected with human immunodeficiency virus show impaired differentiation and altered secretion. J. Virol. 66, 580–585 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baba, T.W. et al. Infection and AIDS in adult macaques after nontraumatic oral exposure to cell-free SIV. Science 272, 1486–1489 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Stahl-Henning, C. et al. Rapid infection of oral mucosal-associated lymphoid tissue with simian immunodeficiency virus. Science 285, 1261–1265 (1999).

    Article  Google Scholar 

  36. Frankel, S.S. et al. Replication of HIV-1 in dendritic cell-derived syncytia at the mucosal surface of the adenoid. Science 272, 115–117 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Geijtenbeek, T.B.H. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Cameron, P.U. et al. Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 257, 383–387 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. McNeely, T.B. et al. Secretory leukocyte protease inhibitor: A human saliva protein exhibiting anti-human immunodeficiency virus 1 activity in vitro. J. Clin. Invest. 96, 456–464 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Veazey, R.S. et al. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 280, 427–431 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, Z.-Q. et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 286, 1353–1357 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Schneider, T. et al. Loss of CD4 T lymphocytes in patients infected with human immunodeficiency virus type 1 is more pronounced in the duodenal mucosa than in the peripheral blood. Gut 37, 524–529 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kewenig, S. et al. Rapid mucosal CD4+ T-cell depletion and enteropathy in simian immunodeficiency virus-infected rhesus macaques. Gastroenterology 116, 1115–1123 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Smith, P.D. et al. Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities. J. Immunol. 167, 2651–2656 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, B. et al. Eptope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function. J. Biol. Chem. 274, 9617–9626 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Wei, X. et al. Viral dynamics in human immunodeficiency virus type 1infection. Nature 373, 117–122 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported NIH grants and contracts DK-47322, DE-72621, AI-41530, HD-41361, AI-35467, CA-73470, AI-28147, DK34151; the Central AIDS Virus Core of the Birmingham Center for AIDS Research (P30-AI-27767); and the Research Service of the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip D. Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, G., Wei, X., Wu, X. et al. Primary intestinal epithelial cells selectively transfer R5 HIV-1 to CCR5+ cells. Nat Med 8, 150–156 (2002). https://doi.org/10.1038/nm0202-150

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0202-150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing