Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

A new piece in the diabetes puzzle

Increased levels of circulating triglyceride and free fatty acids are common features of diabetic dyslipidemia. Positional cloning has led to the identification of a liver-derived protein, angiopoietin-like protein 3, that is largely responsible for diabetic dyslipidemia in an animal model of type 2 diabetes mellitus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of major steps in the metabolism of triglyceride-rich lipoproteins.

Bob Crimi

References

  1. Koishi, R. et al. Role of Angptl3 gene in the regulation of lipid metabolism. Nature Genet. 30, 151–157 (2002).

    Article  CAS  Google Scholar 

  2. Goldberg, I.J. Diabetic dyslipidemia: causes and consequences. J. Clin. Endocrinol. Metab. 86, 965–971 (2001).

    Article  CAS  Google Scholar 

  3. Ginsberg, H.N. Insulin resistance and cardiovascular disease. J. Clin. Invest. 106, 453–458 (2000).

    Article  CAS  Google Scholar 

  4. Willnow, T.E., Sheng, Z., Ishibashi, S. & Herz, J. Inhibition of hepatic chylomicron remnant uptake by gene transfer of a receptor antagonist. Science 264, 1471–1474 (1994).

    Article  CAS  Google Scholar 

  5. Jong, M.C., Hofker, M.H. & Havekes, L.M. Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler. Thromb. Vasc. Biol. 19, 472–484 (1999).

    Article  CAS  Google Scholar 

  6. Rensen, P.C.N. & van Berkel, T.J.C. Apolipoprotein E effectively inhibits lipoprotein lipase-mediated lipolysis of chylomicron-like triglyceride-rich lipid emulsions in vitro and in vivo. J. Biol. Chem. 271, 14791–14799 (1996).

    Article  CAS  Google Scholar 

  7. Zechner, R. The tissue specific expression of lipoprotein lipase: implications for energy and lipoprotein metabolism. Curr. Opin. Lipidol. 8, 77–88 (1997).

    Article  CAS  Google Scholar 

  8. Shimada, M. et al. Overexpression of human lipoprotein lipase protects diabetic transgenic mice from diabetic hypertriglyceridemia and hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 15, 1688–1694 (1995).

    Article  CAS  Google Scholar 

  9. Conklin, D. et al. Identification of a mammalian angiopoietin-related protein expressed specifically in liver. Genomics 62, 477–482 (1999).

    Article  CAS  Google Scholar 

  10. McGarry, J.D. What if Minkofski had been ageusic? Science 258, 766–70 (1992).

    Article  CAS  Google Scholar 

  11. Boden, G., Chen, X., Ruiz, J., White, J.V. & Rossetti, L. Mechanisms of fatty acids induced inhibition of glucose uptake. J. Clin. Invest. 93, 2438–2446 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossetti, L., Goldberg, I. A new piece in the diabetes puzzle. Nat Med 8, 112–114 (2002). https://doi.org/10.1038/nm0202-112

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0202-112

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing