Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke

Abstract

Vascular endothelial growth factor (VEGF), an angiogenic factor produced in response to ischemic injury, promotes vascular permeability (VP). Evidence is provided that Src kinase regulates VEGF-mediated VP in the brain following stroke and that suppression of Src activity decreases VP thereby minimizing brain injury. Mice lacking pp60c-src are resistant to VEGF-induced VP and show decreased infarct volumes after stroke whereas mice deficient in pp59c-fyn, another Src family member, have normal VEGF-mediated VP and infarct size. Systemic application of a Src-inhibitor given up to six hours following stroke suppressed VP protecting wild-type mice from ischemia-induced brain damage without influencing VEGF expression. This was associated with reduced edema, improved cerebral perfusion and decreased infarct volume 24 hours after injury as measured by magnetic resonance imaging and histological analysis. Thus, Src represents a key intermediate and novel therapeutic target in the pathophysiology of cerebral ischemia where it appears to regulate neuronal damage by influencing VEGF-mediated VP.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VEGF-expression following cerebral ischemia in the brain of a VEGF-GFP mouse.
Figure 2: Effect of Src- or Fyn-deficiency, and pharmacological inhibition of Src on infarct volumes 24 h after focal cerebral ischemia.
Figure 3: Effect of Src inhibition on ischemia-induced VP and VEGF-expression.
Figure 4: Effect of Src inhibition on CBF, brain edema (T2-weighted imaging) and infarction area (DWI).
Figure 5: Effect of Src inhibition on infarct volume, neurological score and long-term outcome.

Similar content being viewed by others

References

  1. Lee, J.M., Gregory, G.J. & Choi, D.W. The changing landscape of ischaemic brain injury mechanisms. Nature 399 (Suppl.) 7–14 (1999).

    Article  Google Scholar 

  2. Patel, S.C. & Mody, A. Cerebral hemorrhagic complications of thrombolytic therapy. Prog. Cardiovasc. Dis. 42, 217–233 (1999).

    Article  CAS  Google Scholar 

  3. Rosenberg, G.A. Ischemic brain edema. Prog. Cardiovasc. Dis . 42, 209–216 (1999).

    Article  CAS  Google Scholar 

  4. Nag, S., Takahashi, J.L. & Kilty, D.W. Role of vascular endothelial growth factor in blood-brain barrier breakdown and angiogenesis in brain trauma. J. Neuropathol. Exp. Neurol. 56, 912–921 (1997).

    Article  CAS  Google Scholar 

  5. Pfister, H.W. & Scheld, W.M. Brain injury in bacterial meningitis: therapeutic implications. Curr. Opin. Neurol. 10, 254–259 (1997).

    Article  CAS  Google Scholar 

  6. Go, K.G. The normal and pathological physiology of brain water. Adv. Tech. Stand. Neurosurg. 23, 47–142 (1997).

    Article  CAS  Google Scholar 

  7. Senger, D.R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985 (1983).

    Article  CAS  Google Scholar 

  8. Risau, W., Esser, S. & Engelhard, B. Differentiation of blood-brain barrier endothelial cells Pathol. Biol. 46, 171–175 (1998).

    CAS  PubMed  Google Scholar 

  9. Marti, H.J. et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am. J. Pathol. 156, 965–976 (2000).

    Article  CAS  Google Scholar 

  10. van Bruggen, N. et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J. Clin. Invest. 104, 1613–1620 (1999).

    Article  CAS  Google Scholar 

  11. Zhang, Z.G. et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J. Clin. Invest. 106, 829–838 (2000).

    Article  CAS  Google Scholar 

  12. Schlessinger, J. New roles for Src kinases in control of cell survival and angiogenesis. Cell 100, 293–296 (2000).

    Article  CAS  Google Scholar 

  13. Lowell, C.A. & Soriano, P. Knockouts of Src-family kinases: stiff bones, wimpy T cells, and bad memories. Genes Dev. 10, 1845–1857 (1996).

    Article  CAS  Google Scholar 

  14. Eliceiri, B.P. et al. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol. Cell 4, 915–924 (1999).

    Article  CAS  Google Scholar 

  15. Fukumura, D. et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 94, 715–725 (1998).

    Article  CAS  Google Scholar 

  16. Nawashiro, H., Tasaki, K., Ruetzler, C.A. & Hallenbeck, J.M. TNF-α pretreatment induces protective effects against focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab. 17, 483–490 (1997).

    Article  CAS  Google Scholar 

  17. Hanke, J.H. et al. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J. Biol. Chem. 271, 695–701 (1996).

    Article  CAS  Google Scholar 

  18. Liu, Y. et al. Structural basis for selective inhibition of Src family kinases by PP1. Chem. Biol. 6, 671–678 (1999).

    Article  CAS  Google Scholar 

  19. Zhang, W., Silva, A.C., Williams, D.S. & Koretsky, A.P. NMR measurement of perfusion using arterial spin labeling without saturation of macromolecular spins. Magn. Reson. Med. 33, 370–376 (1995).

    Article  CAS  Google Scholar 

  20. Zhang, Z., Chopp, M., Zhang, R.L. & Goussev, A. A mouse model of embolic focal cerebral ischemia. J. Cereb. Blood Flow Metab. 17, 1081–1088 (1997).

    Article  CAS  Google Scholar 

  21. Ames, A., Wright, R.L., Kowada, M., Thurston, J.M. & Majno, G. Cerebral ischemia. II. The no-reflow phenomena. Am. J. Pathol. 51 437–447 (1968).

    Google Scholar 

  22. Tezuka, T., Umemori, H., Akiyama, T., Nakanishi, S. & Yamamoto, T. PSD-95 promotes Fyn-mediated tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit NR2A. Proc. Natl. Acad. Sci. USA 96, 435–440 (1999)

    Article  CAS  Google Scholar 

  23. Lu, W.Y. et al. G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nat. Neurosci. 2, 331–338 (1999).

    Article  CAS  Google Scholar 

  24. Cheung, H.H. et al. Altered association of protein tyrosine kinases with postsynaptic densities after transient cerebral ischemia in the rat brain. J. Cereb. Blood Flow Metab. 20, 505–512 (2000).

    Article  CAS  Google Scholar 

  25. Takagi, N. et al. The effect of transient global ischemia on the interaction of Src and Fyn with the N-methyl-D-aspartate receptor and postsynaptic densities: possible involvement of Src homology 2 domains. J. Cereb. Blood Flow Metab. 19, 880–888 (1999).

    Article  CAS  Google Scholar 

  26. Grant, S.G. et al. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258, 1903–1910 (1992).

    Article  CAS  Google Scholar 

  27. Grant, S.G., Karl, K.A., Kiebler, M.A. & Kandel, E.R. Focal adhesion kinase in the brain: novel subcellular localization and specific regulation by Fyn tyrosine kinase in mutant mice. Genes Dev. 9, 1909–1921 (1995).

    Article  CAS  Google Scholar 

  28. Dirnagl, U., Iadecola, C. & Moskowitz, M.A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22, 391–397 (1999).

    Article  CAS  Google Scholar 

  29. Jiang, Q. et al. Temporal evolution and spatial distribution of the diffusion constant of water in rat brain after transient middle cerebral artery occlusion. J. Neurol. Sci. 120, 123–130 (1993).

    Article  CAS  Google Scholar 

  30. Jiang, Q. et al. Diffusion-, T2-, and perfusion-weighted nuclear magnetic resonance imaging of middle cerebral artery embolic stroke and recombinant tissue plasminogen activator intervention in the rat. J. Cereb. Blood Flow Metab. 18, 758–767 (1998).

    Article  CAS  Google Scholar 

  31. Eliasson, M.J.L. et al. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nature Med. 3, 1089–1095 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Brodhag for technical assistance; and U. Koedel and G.J. del Zoppo for helpful input; and B. Seed for VEGF-GFP mice. This work was supported by grants from the Deutsche Forschungsgemeinschaft (Pa 749/1-1 to R.P.) and the NIH: 1F32HL09435 to B.P.E.; CA50287, CA45726 and CA78045 to D.A.C.; PO1 NS23393 to M.C.; and RO1 NS34184 to Q.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Cheresh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, R., Zhang, Z., Eliceiri, B. et al. Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nat Med 7, 222–227 (2001). https://doi.org/10.1038/84675

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84675

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing