Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector

Abstract

Hemophilia B is a severe X-linked bleeding diathesis caused by the absence of functional blood coagulation factor IX, and is an excellent candidate for treatment of a genetic disease by gene therapy. Using an adeno-associated viral vector, we demonstrate sustained expression (>17 months) of factor IX in a large-animal model at levels that would have a therapeutic effect in humans (up to 70 ng/ml, adequate to achieve phenotypic correction, in an animal injected with 8.5 × 10 12 vector particles/kg). The five hemophilia B dogs treated showed stable, vector dose-dependent partial correction of the whole blood clotting time and, at higher doses, of the activated partial thromboplastin time. In contrast to other viral gene delivery systems, this minimally invasive procedure, consisting of a series of percutaneous intramuscular injections at a single timepoint, was not associated with local or systemic toxicity. Efficient gene transfer to muscle was shown by immunofluorescence staining and DNA analysis of biopsied tissue. Immune responses against factor IX were either absent or transient. These data provide strong support for the feasibility of the approach for therapy of human subjects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ac, Hematoxylin and eosin staining of cross-sections of tibialis anterior muscle of a normal dog injected with 2.8 × 1011 particles of AAV-CMV-cF.IX.
Figure 2: ad, WBCT of hemophilia B dogs as a function of time after intramuscular injection with AAV-CMV-cF.IX.
Figure 3: Canine F.IX levels in plasma samples of hemophilia B dogs (in ng/ml) as a function of time after intramuscular injection of AAV-CMV-cF.IX vector.
Figure 4: a and b, Western blot analysis of anti-cF.IX in serum samples of hemophilia B dogs 3 (a) and 5 (b).
Figure 5: Immunofluorescence staining of canine F.IX produced by muscle fibers 46 days after intramuscular injection of 4.4 × 1010 particles of AAV-CMV-cF.IX (per site) into the tibialis anterior muscle of hemophilia B dog 1. a, Negative control (muscle from uninjected dog). b , Injected site of dog 1.
Figure 6: Southern blot hybridization of genomic DNA isolated from biopsied muscle tissue 6 weeks after injection of AAV-CMV-cF.IX into the tibialis anterior of a normal or hemophilic dog.

Similar content being viewed by others

References

  1. Lofqvist, T., Nilsson, I.M., Berntorp, E. & Pettersson, H. Haemophilia prophylaxis in young patients—a long term follow up. J. Int. Med. 241, 395–400 (1997).

    Article  CAS  Google Scholar 

  2. Eyster, M.E. et al. Central nervous system bleeding in hemophiliacs. Blood 51, 1179–1188 ( 1978).

    CAS  PubMed  Google Scholar 

  3. Bray, G.L. & Lubahn, N.L. Hemophilia presenting with–intracranial hemorrhage. An approach to the infant with intracranial bleeding and coagulopathy. Am. J. Dis. Children 141, 1215– 1217 (1987).

    Article  CAS  Google Scholar 

  4. Lusher, J.M. Prophylaxis in children with hemophilia: Is it the optimal treatment? Thromb. Haemost. 78, 726–729 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Ragni, M.V., Hord, J.D. & Blatt, J. Central venous catheter infection in hemophiliacs undergoing prophylaxis or immune tolerance with clotting factor concentrate. Haemophilia 3, 90–95 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  6. Kay, M.A. et al. In vivo gene therapy of hemophilia B: Sustained partial correction in factor IX-deficient dogs. Science 262 , 117–119 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Herzog, R.W. et al. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc. Nat. Acad. Sci. USA 94, 5804– 5809 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xiao, X., Li, J. & Samulski, R.J. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J. Virol. 70, 8098–8108 ( 1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Monahan P.E. et al. Direct intramuscular injection with recombinant–AAV vectors results in sustained expression in a dog model of hemophilia. Gene Ther. 5, 40–49 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  10. Fisher, K.J. et al. Recombinant adeno-associated virus for muscle directed gene therapy. Nature Med. 3:306– 312 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Yao, S.-N., Smith, K.J. & Kurachi, K. Primary myoblast-mediated gene transfer: Persistent expression of human factor IX in mice. Gene Ther. 1 , 99–107 (1994).

    CAS  PubMed  Google Scholar 

  12. Verma, I.M. & Somia, N. Gene therapy - promises, problems and prospects. Nature 389, 239– 242 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Kay, M.A. et al. In vivo hepatic gene therapy: Complete albeit transient correction of factor IX deficiency in hemophilia B dogs. Proc. Natl. Acad. Sci. USA 91, 2353–2357 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fang, B. et al. Lack of persistence of E1 recombinant adenoviral vectors containing a temperature-sensitive E2A mutation in immunocompetent mice and hemophilia B dogs. Gene Ther. 3, 217–222 (1996).

    CAS  PubMed  Google Scholar 

  15. Kohn, D.B. et al. T lymphocytes with a normal ADA gene accumulate after transplantation of transduced autologous umbilical cord blood CD34+ cells in ADA-deficient SCID neonates. Nature Med. 4, 775–780 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Nienhuis, A.W., McDonagh, K.T. & Bodine, D.M. Gene transfer into hematopoietic stem cells. Cancer 67, 2700–2704 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  17. Matsushita, T. et al. Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther. 5, 938– 945 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Evans, J.P., Brinkhous, K.M., Brayer, G.D., Reisner. H.W. & High, K.A. Canine hemophilia B resulting from a point mutation with unusual consequences. Proc. Natl. Acad. Sci. USA 86, 10095–10099 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mitruka, B.M., Rawnsley, H.M. & Vadehra, D.V. in Animals for Medical Research–Models for the Study of Human Disease. 216 (John Wiley & Sons, New York, 1976).

    Google Scholar 

  20. Nakai, H. et al. Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver. Blood 91, 4600–4607 (1998).

    CAS  PubMed  Google Scholar 

  21. Baskar, J.F. et al. The enhancer domain of the human cytomegalovirus major immediate-early promoter determines cell type-specific expression in transgenic mice. J. Virol. 70, 3207 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kay, M.A. et al. Expression of human alpha1-antitrypsin in dogs after autologous trannsplantation of retroviral transduced hepatocytes. Proc. Natl. Acad. Sci. USA 89, 89–93 (1991).

    Article  Google Scholar 

  23. Svensson, E.C. et al. Long-term erythropoietin expression in rodents and non-human primates following intramuscular injection of a replication-defective adenoviral vector. Hum. Gene Ther. 8, 1797– 1806 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, Y., Haecker, S.E., Su, Q. & Wilson JM. Immunology of gene therapy with adenoviral vectors in mouse skeletal muscle. Hum. Molec. Genet. 5, 1703–1712 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Dai. Y. et al. Cellular and humoral responses to adenoviral vectors containing factor IX gene: Tolerization of factor IX and vector antigens allows for long-term expression. Proc. Natl. Acad. Sci. USA 92, 1401–1405 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jooss, K., Yang, Y., Fisher, K.J. & Wilson, J.M. Transduction of dentritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J. Virol. 72, 4212–4223 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Xiao, X., Li, J. & Samulski, R.J. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72, 2224–2232 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferrari, F.K., Xiao, X., McCarty, D. & Samulski, R.J. New developments in the generation of Ad-free, high titer rAAV gene therapy vectors. Nature Med. 3, 1295–1297 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. High, K.A. Factor IX: Molecular structure, epitopes, and mutations associated with inhibitor formation. Adv. Exp. Med. Biol. 386, 79– 86 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Bray, G.L. et al. A Multicenter study of recombinant factor VIII (Recombinate): Safety, efficacy, and inhibitor risk in previously untreated patients with hemophilia A. Blood 83, 2428– 2435 (1994).

    CAS  PubMed  Google Scholar 

  31. Lusher, J.M., Arkin, S., Abildgaard, C.F. & Schwartz. Recombinant factor VIII for the treatment of previously untreated patients with hemophilia A. N. Engl. J. Med. 328, 453–459 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  32. Gilles, J.G.G., Arnout, J., Vermylen, J. & Saint-Remy, J.-M.R. Anti-factor VIII antibodies of hemophiliac patients are frequently directed towards nonfunctional determinants and do not exhibit isotypic restriction. Blood 82, 2452–2461 (1993).

    CAS  PubMed  Google Scholar 

  33. Gilles, J.G., Desqueper, B., Lenk, H., Vermylen, J. & Saint-Remy, J.M. Neutralizing anti-idiotypic antibodies to factor VIII inhibitors after desensitization in patients with hemophilia A. J. Clin. Invest. 97: 1382–1388 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miao, C.H. et al. The kinetics of rAAV integration in the liver. Nat. Genet. 19, 13–15 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  35. Duan, D. et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J. Virol. 72, 8568–8577 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Afione, S.A. et al. In vivo model of adeno-associated virus vector persistence and rescue. J Virol 70, 3235– 3241 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Evans, J.P., Watzke, H.H., Ware, J.L., Stafford, D.W. & High, K.A. Molecular cloning of a cDNA encoding canine factor IX. Blood 74, 207–212 (1989).

    CAS  PubMed  Google Scholar 

  38. Kessler, P.D. et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc. Natl. Acad. Sci. USA 93, 14082–14087 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brinkhous K.M., Landen, C.N. & Read, M.S. Evaluation of sensitivity of whole blood clotting time (WBCT), partial thromboplastin time (PTT), and F.IX one-stage bioassay tests with low plasma F.IX levels observed with transfusion or gene therapy in canine hemophilia B. Blood 82, Suppl.1, 592a (1993).

    Google Scholar 

  40. Walter, J., You, Q., Hagstrom, N., Sands, M. & High, K.A. Successful expression of human factor IX following repeat administration of an adenoviral vector in mice. Proc. Natl. Acad. Sci. USA 93, 3056–3061 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kung, S.-H. et al. Human factor IX corrects the bleeding diathesis of mice with hemophilia B. Blood 91, 784– 790 (1998).

    CAS  PubMed  Google Scholar 

  42. Sambrook, J., Fritsch, E.F. & Maniatis, T. in Molecular Cloning (ed. Nolan, C.) 9.16 –9.19 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York,1989).

    Google Scholar 

Download references

Acknowledgements

The authors thank Acuson for supplying the ultrasound equipment, M. Haskins for making the normal dog experiment possible, and J.H. Liu, S.J. Tai, and M.L. McCleland, as well as the Cell Morphology Core of the Institute for Human Gene Therapy at the University of Pennsylvania, for technical assistance. We also acknowledge the work of the staff at the vector production facility at Avigen, and the staff of the Francis Owen Blood Research Laboratory at the University of North Carolina-Chapel Hill. This work was supported by National Institutes of Health Grants R01 HL53668 and P50 HL54500 to K.A.H., and Avigen, a company in which K.A.H. holds equity. P.A.F. is supported by the Katherine Dormandy Trust for Hemophilia, and J.H.H. was supported by NIH grant F32 HL09397

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine A. High.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzog, R., Yang, E., Couto, L. et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat Med 5, 56–63 (1999). https://doi.org/10.1038/4743

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing