Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gene expression profiles of laser-captured adjacent neuronal subtypes

A Correction to this article was published on 01 March 1999

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Laser capture microdissection from Nissl-stained sections (10 μm in thickness) of adult rat large and small DRG neurons.
Figure 2: cDNA microarray expression patterns of small (S) and large (L) neurons.
Figure 3: Representative fields of radioisotopic in situ hybridization of rat DRG with selected cDNAs.

References

  1. 1

    Shalon, D. Gene expression microarrays: A new tool for genomic research. Pathol. Biol. 46, 107–109 (1998).

    CAS  PubMed  Google Scholar 

  2. 2

    Lockhart, D.J. et al. Genomics and DNA chips. Nucleic Acids Symp. Ser. 38, 11–12 ( 1998).

    CAS  Google Scholar 

  3. 3

    Schena, M. et al. Microarrays: Biotechnology's discovery platform for functional genomics. Trends Biotechnol. 16, 301– 306 (1998).

    CAS  Article  Google Scholar 

  4. 4

    DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680– 686 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Cho, R.J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Schena, M. et al. Parallel human genome analysis: Microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. USA 93, 10614–10619 (1996).

    CAS  Article  Google Scholar 

  7. 7

    Heller, R.A. et al. Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc. Natl. Acad. Sci. USA 94, 2150–2155 (1997).

    CAS  Article  Google Scholar 

  8. 8

    Welford, S.M. et al. Detection of differentially expressed genes in primary tumor tissues using representational differences analysis coupled to microarray hybridization. Nucleic Acids Res. 26, 3059 –3065 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Emmert-Buck, M.R. et al. Laser capture microdissection. Science 274, 998–1001 (1996).

    CAS  Article  Google Scholar 

  10. 10

    Van Gelder, R.N. et al. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. USA 87, 1663 –1667 (1990).

    CAS  Article  Google Scholar 

  11. 11

    Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 ( 1995).

    CAS  Article  Google Scholar 

  12. 12

    Coggeshall, R.E. & Willis, W.D. in Sensory Mechanisms of the Spinal Cord (Plenum, New York, 1991).

  13. 13

    Dib-Hajj, S.D., Tyrrell, L., Black, J.A. & Waxman, S.G. NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc. Natl. Acad. Sci. USA 95, 8963–8968 ( 1998).

    CAS  Article  Google Scholar 

  14. 14

    Goldstein, M.E., Grant, P., House, S.B., Henken, D.B. & Gainer, H. Developmental regulation of two distinct neuronal phenotypes in rat dorsal root ganglia. Neuroscience 71, 243–258 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Naciff, J.M., Kaetzel, M.A., Behbehani, M.M. & Dedman, J.R. Differential expression of annexins I–VI in the rat dorsal root ganglia and spinal cord. J. Comp. Neurol. 368, 356 –370 (1996).

    CAS  Article  Google Scholar 

  16. 16

    Liu, N., Fukami, K., Yu, H. & Takenawa, T. A new phospholipase C delta-4 is induced at S-phase of the cell cycle and appears in the nucleus. J. Biol. Chem. 271, 355– 360 (1996).

    CAS  Article  Google Scholar 

  17. 17

    Oh, Y., Sashihara, S., Black, J.A. & Waxman, S.G. Na+ channel beta 1 subunit mRNA: Differential expression in rat spinal sensory neurons. Mol. Brain Res. 30, 357–361 (1995).

    CAS  Article  Google Scholar 

  18. 18

    Nicke, A. et al. P2X1 and P2X3 receptors form stable trimers: A novel structural motif of ligand-gated ion channels. EMBO J. 17, 3016–3028 (1998).

    CAS  Article  Google Scholar 

  19. 19

    Costigan, M. et al. Heat shock protein 27: Developmental regulation and expression after peripheral nerve injury. J. Neurosci. 18, 5891–5900 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Parysek, L.M., Chisholm, R.L., Ley, C.A. & Goldman, R.D. A type III intermediate filament gene is expressed in mature neurons. Neuron 1, 395–401 ( 1988).

    CAS  Article  Google Scholar 

  21. 21

    Liang, P. & Pardee, A.B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971 ( 1992).

    CAS  Article  Google Scholar 

  22. 22

    Kim, S.H. & Chung, J.M. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50, 355–363 ( 1992).

    CAS  Article  Google Scholar 

  23. 23

    Simmons, D.M., Arriza, J.L. & Swanson, L.W. A complete protocol for in situ hybridization of messenger RNAs in brain and other tissues with radiolabeled single-stranded RNA probes. J. Histotechnol. 12, 169– 181 (1989).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank K. Witmeyer, K. Flores, J. Chambers, A. Leung and V. Le for their technical assistance.

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Luo, L., Salunga, R., Guo, H. et al. Gene expression profiles of laser-captured adjacent neuronal subtypes . Nat Med 5, 117–122 (1999). https://doi.org/10.1038/4806

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing