Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The antibiotic rifampicin is a nonsteroidal ligand and activator of the human glucocorticoid receptor

Abstract

The glucocorticoid receptor (GR) belongs to a superfamily of ligand-regulated nuclear steroid hormone receptors. The steps in the signal transduction pathway leading to the biological effects of glucocorticoids (GCs) include sequentially binding of the steroid to the GR ligand binding domain (LBD), receptor transformation1–3, nuclear translocation and either positive or negative gene transactivation4. Rifampicin (RIF) is a macrocyclic antibiotic used as an antituberculosis agent5. As the incidence of tuberculosis has been increasing, in part because of the AIDS epidemic, a growing number of patients are being exposed to the adverse effects of this antibiotic6. Indeed, this compound, as are the GCs (ref. 7), is often implicated in noxious drug interactions, because of its strong ability to induce drug-metabolizing enzymes8,9. Moreover, in humans, RIF, as are the GCs (ref. 10), has been described as a potential immunodepressor, associated notably with the reduction of mitogenic responsiveness of human peripheral blood lymphocytes11,12. Here, we report that RIF activates the human glucocorticoid receptor (hGR). Transient expression of wild-type, deleted or mutated GRs; sucrose density gradient sedimentation; and the BIAcore technique strongly suggest that RIF binds to the receptor with the physiological consequence that this antibiotic acts as an immunodepressor. Given the wide use of RIF in the treatment of coinfection of tuberculosis and HIV, this report is highly relevant to current medical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yamamoto, K.R. Steroid receptor regulated transcription of specific gene and gene networks. Annu. Rev. Cenet. 19, 209–211 (1985).

    Article  CAS  Google Scholar 

  2. Green, S. & Chambon, P. Nuclear receptors enhance our understanding of transcription regulation. Trends Genet. 4, 309–314 (1988).

    Article  CAS  Google Scholar 

  3. Beato, M. Gene regulation by steroid hormones. Cell 56, 335–339 (1989).

    Article  CAS  Google Scholar 

  4. Ringold, G.M. Steroid-hormone regulation of gene expression. Annu. Rev. Pharmacol. Toxicol. 25, 529–566 (1985).

    Article  CAS  Google Scholar 

  5. Mitchison, D.A. Understanding the chemotherapy of tuberculosis—current problems [The Garrod lecture]. J. Antimicrob. Chemother. 29(5), 477–493 (1992).

    Article  CAS  Google Scholar 

  6. Mitchell, L., Wendon, J., Fitt, S. & Williams, R. Anti-tuberculous therapy and acute liver failure. Lancet 4, 555–556 (1995).

    Article  Google Scholar 

  7. Corcos, L. Phenobarbital and dexamethasone induce expression of cytochrome P450 genes from subfamilies IIB, IIC, and IIIA in mouse liver. Drug. Metab. Dispos. 20, 797–801 (1992)

    CAS  PubMed  Google Scholar 

  8. Cresteil, T. et al. Induction of drug-metabolizing enzymes by tricyclic antide-pressants in human liver: Characterization and partial resolution of cytochromes P450. Br. J. Gin. Pharmacol. 16, 651–657 (1983).

    Article  CAS  Google Scholar 

  9. Pichard, L., et al. Effect of corticosteroids on the expression of cytochromes P450 and on cyclosporin A oxidase activity in primary cultures of human hepatocytes. Mol. Pharmacol. 41, 1047–1055 (1992).

    CAS  PubMed  Google Scholar 

  10. O'Malley, B.W. & Tsai, M.J. Molecular pathways of steroid receptor action. Biol. Reprod. 46(2), 163–167 (1992).

    Article  CAS  Google Scholar 

  11. Ibrahim, M.S., Maged, Z.A., Haron, A., Khalil, R.Y. & Attllah, A.M. Antibiotics and immunity: Effect of antibiotics on natural killer, antibody dependent cell-mediated cytotoxicity and antibody production. Chemioterapia 6, 426–430 (1987).

    CAS  PubMed  Google Scholar 

  12. Nessi, R., Pallanza, R. & Fowst, G. Rifampicin and Immunosuppression. Arzneim.-Forsch. 24(5), 832–836 (1974).

    CAS  Google Scholar 

  13. Baumann, H., Jahreis, G.P. & Morella, K.K. Interaction of cytokine—and glucocorticoid—response elements of acute-phase plasma protein genes: Importance of glucocorticoid beta-fibrinogen genes. J. Biol.Chem. 265, 22275–22281 (1990).

    CAS  PubMed  Google Scholar 

  14. Gradin, K., Whitelaw, M.L., Toftgard, R., Poellinger, L. & Berghard, A.J. A tyrosine kinase-dependent pathway regulates ligand-dependent activation of the dioxin receptor in human keratinocytes. J. Biol. Chem. 269, 23800–23807 (1994).

    CAS  PubMed  Google Scholar 

  15. Ning, Y.-M. & Sánchez, E.R. Potentiation of glucocorticoid receptor-mediated gene expression by the immunophilin ligands FK506 and rapamycin. J. Biol. Chem. 268, 6073–6076 (1993).

    CAS  PubMed  Google Scholar 

  16. Green, S. & Chambon, P. Oestradiol induction of a glucocorticoid-responsive gene by a chimaeric receptor. Nature 325, 7578 (1987).

    Google Scholar 

  17. Kumar, V., et al. Functional domains of the human estrogen receptor. Cell 51, 941–951 (1987).

    Article  CAS  Google Scholar 

  18. McGregor, D.B., Edwards, I., Wolf, C.R., Forrester, L.M. & Caspary, W.J. Endogenous xenobiotic enzyme levels in mammalian cells. Mutat. Res. 261, 29–39 (1991).

    Article  CAS  Google Scholar 

  19. Moguilewsky, M. & Philibert, D. RU 38486: Potent antiglucocorticoid activity correlated with strong binding to the cytosolic glucocorticoid receptor followed by an impaired activation. J. Steroid. Biochem. 20, 271–276 (1984).

    Article  CAS  Google Scholar 

  20. Lanford, R.E., Carey, K.D., Estlack, L.E., Smith, G.C. & Hay, R.V. Analysis of plasma protein synthesis in long-term primary cultures of baboon hepatocytes maintained in a serum-free medium. In Vitro Cell. Dev. Biol. 25, 174–182 (1989).

    Article  CAS  Google Scholar 

  21. Ourlin, J.C., Vilarem, M.J., Daujat, M., Harricanne, M.C. & Maurel, P. Lipid-mediated transfection of normal adult human hepatocytes in primary culture. Anal. Biochem. 247, 34–44 (1997).

    Article  CAS  Google Scholar 

  22. Benhamou, B. et al. A single amino acid that determines the sensitivity of progesterone receptors to RU486. Science 256, 206–209 (1992).

    Article  Google Scholar 

  23. Wurtz, J.M. et al. A canonical structure for the ligand-binding domain of nuclear receptors. Nature Struct Biol. 3, 87–94 (1996).

    Article  CAS  Google Scholar 

  24. Denis, M., Poellinger, L., Wikstöm A.C. & Gustafsson, J. Requirement of hormone for thermal conversion of the glucocorticoid receptor to a DNA-binding state. Nature 333, 686–688 (1988).

    Article  CAS  Google Scholar 

  25. Bhakoo, H.S., Paolini, N.S., Milholland, R.J., Lopez, R.E. & Rosen, F. Clucocorticoid receptors and the effect of glucocorticoids on the growth of B16 melanoma. Cancer Res. 41, 1695–1701 (1981).

    CAS  PubMed  Google Scholar 

  26. Fägerstam, L.G. & Karlsson, R. Biosensor techniques. in Immunochemistry (eds. Van Oss, C.J., & Van Regenmorte, M.) 949–970 (Marcel Dekker, New York, 1993).

  27. Fägerstam, L.G. & O'Shannessy, D.J. Surface plasmon resonance detection in affinity technologies. Handb. Affinity Chromatogr. 63, 229–252 (1993).

    Google Scholar 

  28. Malmqvist, M. Biospecific interaction analysis using biosensor technology. Nature 361, 186–187 (1993).

    Article  CAS  Google Scholar 

  29. Yu, C., Warriar, N. & Govindan, M.V. Cysteines 638 and 665 in the hormone binding domain of human glucocorticoid receptor define the specificity to glucocorticoid receptor. Biochemistry 34, 14163–14173 (1995).

    Article  CAS  Google Scholar 

  30. Xu, M., Chakraborti, P.K., Garabedian, M.J., Yamamoto, K.R. & Simons, S.S. Molecular structure of glucocorticoid receptor domains is not equivalent to functional independence. J. Biol. Chem. 271, 21430–21438 (1996).

    Article  CAS  Google Scholar 

  31. Simons, S.S., Sistare, F.D. & Chakraborti, P.K. Steroid binding activity is retained in a 16-kDa fragment of the steroid binding domain of rat glucocorticoid receptors. J. Biol. Chem. 254, 14493–14497 (1989).

    Google Scholar 

  32. Kraus, W.L., Mclnerney, E.M. & Katzenellenbogen, B.S. Ligand-dependent tran-scriptionally productive association of the amino and carboxyl-terminal regions of a steroid hormone nuclear receptor. Proc. Natl. Acad. Sci. USA 92, 12314–12318 (1995).

    Article  CAS  Google Scholar 

  33. Langley, E., Zhou, Z., & Vilson, E.M. Evidence for an anti-parallel orientation of the ligand-activated human androgen receptor dimer. J. Biol. Chem. 270, 29983–29990 (1995).

    Article  CAS  Google Scholar 

  34. Vacca, A. et al. Glucocorticoid receptor-mediated suppression of the Interleukin 2 gene expression through impairment of the cooperativity between nuclear factor of activated T cells and AP-1 enhancer elements. J. Exp. Med. 175, 637–646 (1992).

    Article  CAS  Google Scholar 

  35. Jonat, C., et al. Antitumor promotion and anti-inflammation down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 62, 1189–1204 (1990).

    Article  CAS  Google Scholar 

  36. Watkins, P.B. Role of cytochrome P450 in drug metabolism and hepatotoxicity. Semin. Liver. Dis. 10, 235–250 (1990).

    Article  CAS  Google Scholar 

  37. Gao, X. & Huang, L. A novel cationic liposome, reagent for efficient transfection of mammalian cells. Biochem. Biophys. Res. Comm. 179, 280–285 (1991).

    Article  CAS  Google Scholar 

  38. Pichard, L. et al. Cyclosporin A drug interaction: Screening for inducers and inhibitors of cytochrome P-450 (cyclosporin A oxidase) in primary cultures of human hepatocytes and liver microsomes. Drug. Metab. Dispos. 18, 595–606 (1990).

    CAS  PubMed  Google Scholar 

  39. Durand, D.B., et al. Characterization of antigen receptor response elements within the interleukin-2 enhancer. Mol. Cell. Biol. 8, 1715–1724 (1988).

    Article  CAS  Google Scholar 

  40. Angel, P., et al. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49, 729–739 (1990).

    Article  Google Scholar 

  41. Neuman, J.R., Morency, C.A. & Russian, K.O., A novel rapid assay for chloram-phenicol acetyltransferase gene expression. Biotechniques 5, 444 (1987).

  42. O'Shanessy, D.J., Brigham-Burke, M., Sonseson, K.K., Hensley, P. & Brooks, I. Determination of rate and equilibrium binding constants for macromolecular interactions by surface plasmon resonance. Methods Enzymol. 249, 323–349 (1994).

    Article  Google Scholar 

  43. Karlsson, R., Ross, H., Fägerstam, L. & Persson, B. Kinetic and concentration analysis using BIA technology. Methods 6, 99–110 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.J. Vilarem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calleja, C., Pascussi, J., Mani, J. et al. The antibiotic rifampicin is a nonsteroidal ligand and activator of the human glucocorticoid receptor. Nat Med 4, 92–96 (1998). https://doi.org/10.1038/nm0198-092

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0198-092

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing