Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The serum concentration of active transforming growth factor-β is severely depressed in advanced atherosclerosis

Abstract

Recent evidence has led us to propose that transforming growth factor-β (TGF-β) is a key inhibitor of atherosclerosis. We show here that a population of patients with advanced atherosclerosis all have less active TGF-β in their sera than patients with normal coronary arteries, with a fivefold difference in average concentration between the two groups. This correlation with atherosclerosis is much stronger than for other Known major risk factors and it may therefore have important diagnostic and prognostic significance. Aspirin medication correlates with an increase in active TGF-β concentration, indicating that therapeutic interventions for TGF-β are possible.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Peter Libby, Julie E. Buring, … Eldrin F. Lewis

References

  1. Syetkowski, P.A. et al. Changes in risk factors and the decline in mortality from cardiovascular disease: the Framingham study. New. Engl J. Med. 322, 1635–1641 (1990).

    Article  Google Scholar 

  2. Utermann, G. The mysteries of lipoprotein (a). Science 246, 904–910 (1989).

    Article  CAS  Google Scholar 

  3. Genest, J.J. et al. Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation 85, 2025–2033 (1992).

    Article  Google Scholar 

  4. Schreiner, P.J. et al. Lipoprotein (a) as a risk factor for preclinical atherosclerosis. Arterioscl Thromb. 13, 826–833 (1993).

    Article  CAS  Google Scholar 

  5. Wald, N.J. et al. Apolipoproteins and ischaemic heart disease — implications for screening. The Lancet 343, 75–79 (1994).

    Article  CAS  Google Scholar 

  6. Law, M.R. et al. Assessing possible hazards of reducing serum cholesterol. Br. med. J. 308, 373–379 (1994).

    Article  CAS  Google Scholar 

  7. Hamsten, A. et al. Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. New. Engl. J. Med. 313, 1557–1563 (1985).

    Article  CAS  Google Scholar 

  8. de Bono, D. Significance of raised plasma concentrations of tissue type plasminogen activator and plasminogen activator inhibitor in patients at risk from ischaemic heart disease. Br. Heart J. 71, 504–507 (1994).

    Article  CAS  Google Scholar 

  9. Gordon, D.J. & Rifkind, B.M. Current concepts-high density lipoprotein — the clinical implications of recent studies. New. Engl. J. Med. 321, 1311–1316 (1989).

    Article  CAS  Google Scholar 

  10. Kannel, W.B. High density lipoproteins: epidemiological profile and risks of coronary artery disease. Am. J. Cardiol 52, 9–12B (1983.

    Article  Google Scholar 

  11. Grainger, D.J. et al. Proliferation of human smooth muscle Cells promoted by lipoprotein (a). Science 260, 1655–1658 (1993).

    Article  CAS  Google Scholar 

  12. Grainger, D.J. et al. Activation of transforming growth factor b is inhibited in apolipoprotein (a) transgenic mice. Nature 370, 460–462 (1994).

    Article  CAS  Google Scholar 

  13. Ross, R. & Glomset, J.N. The pathogenesis of atherorosclerosis. N. Eng. J. Med. 295, 369–377 (1976).

    Article  CAS  Google Scholar 

  14. Ross, R. The pathogenesis of atherosclerosis : a perspective for the 1990s. Nature 362, 801–809 (1993.

    Article  CAS  Google Scholar 

  15. Kojima, S., Harpel, P.C. & Rifkin, D.B. Lipoprotein (a) inhibits the generation of transforming growth factor b: an endogenenous inhibitor of smooth muscle Cell migration. J. cell Biol. 113, 1439–1443 (1991).

    Article  CAS  Google Scholar 

  16. Kirschenlohr, H.L. et al. Adult human aortic smooth muscle Cells in culture produce active TGF-β. Am. J. Physiol 265, C571–C576 (1993).

    Article  CAS  Google Scholar 

  17. Lyons, R., Keski-Oja, J. & Moses, H.L. Proteolytic activation of latent transforming growth factor-β from fibroblast conditioned medium. J. Cell Biol. 106, 1659–1665 (1988).

    Article  CAS  Google Scholar 

  18. Lyons, R.M. et al. Mechanisms of activation of latent recombinant transforming growth factor β by plasmin. J. Cell Biol. 110, 1361–1367 (1990).

    Article  CAS  Google Scholar 

  19. McLean, J.W. et al. cDNA sequence of human apolipoprotein (a) is homologous to plasminogen. Nature 330, 132–137 (1987).

    Article  CAS  Google Scholar 

  20. Lawrence, D.A. Identification and activation of latent transforming growth factor β. Meth Enzym 198, 327–336 (1991).

    Article  CAS  Google Scholar 

  21. Grainger, D. et al. Active and acid-activatable TGF-b in human sera, platelets and plasma. Clin. Chim. Acta (In the press).

  22. McDonald, C.C. & Stewart, H.J. Fatal myocardial infarction in the Scottish adjuvant tamoxifen trial. Br. med. J. 303, 435–437 (1991).

    Article  CAS  Google Scholar 

  23. Colletta, A.A. et al. Antioestrogens induce the secretion of active transforming growth factor-β from foetal human fibroblasts. Br. J. Cancer 62, 405–409 (1990).

    Article  CAS  Google Scholar 

  24. Grainger, D.J. et al. decreases the rate of proliferation of rat vascular smooth muscle cells in culture by inducing the production of transforming growth factor-β. Biochem. J. 294, 109–112 (1993).

    Article  CAS  Google Scholar 

  25. Butta, A. et al. Induction of transforming growth factor-β in human breast cancer in vivo following tamoxifen treatment. Cancer Res. 52, 4261–4264 (1992).

    CAS  PubMed  Google Scholar 

  26. Lin, H.Y. et al. Expression cloning of the TGF-β type II receptor, a functional transmembrane serine/threonine kinase. Cell 68, 775–786 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grainger, D., Kemp, P., Metcalfe, J. et al. The serum concentration of active transforming growth factor-β is severely depressed in advanced atherosclerosis. Nat Med 1, 74–79 (1995). https://doi.org/10.1038/nm0195-74

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0195-74

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing