Optical sensing of specific molecular targets and pathways deep inside living mice has become possible as a result of a number of advances. These include design of biocompatible near-infrared fluorochromes, development of targeted and activatable 'smart' imaging probes, engineered photoproteins and advances in photon migration theory and reconstruction. Together, these advances will provide new tools making it possible to understand more fully the functioning of protein networks, diagnose disease earlier and speed along drug discovery.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Pham, T.H. et al. Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging. Appl. Opt. 39, 6487–6497 (2000).
Farkas, D.L. & Becker, D. Applications of spectral imaging: detection and analysis of human melanoma and its precursors. Pigment Cell Res. 14, 2–8 (2001).
Zonios, G., Bykowski, J. & Kollias, N. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J. Invest. Dermatol. 117, 1452–1457 (2001).
Gratton, G. & Fabiani, M. Shedding light on brain function: the event-related optical signal. Trends Cogn. Sci. 5, 357–363 (2001).
Vanzetta, I. & Grinvald, A. Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science 286, 1555–1558 (1999).
Piston, D.W., Masters, B.R. & Webb, W.W. Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy. J. Microsc. 178, 20–27 (1995).
Franceschini, M.A. et al. Frequency-domain techniques enhance optical mammography: initial clinical results. Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
Villringer, A. & Chance, B. Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 20, 435–442 (1997).
Benaron, D.A. et al. Noninvasive functional imaging of human brain using light. J. Cerebral Blood Flow Metab. 20, 469–477 (2000).
Boas, D.A. et al. Imaging the body with diffuse optical tomography. IEEE Signal Processing Mag. 18, 57–75 (2001).
Pogue, B.W. et al. Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast. Radiology 218, 261–266 (2001).
Ntziachristos, V. & Chance, B. Probing physiology and molecular function using optical imaging: applications to breast cancer. Breast Cancer Res. 3, 41–46 (2001).
Ntziachristos, V., Yodh, A.G., Schnall, M. & Chance, B. MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions. Neoplasia 4, 347–354 (2002).
Alfano, R.R. et al. Time-resolved and nonlinear optical imaging for medical applications. Ann. NY Acad. Sci. 838, 14–28 (1998).
Demos, S.G., Radousky, H.B. & Alfano, R.R. Deep subsurface imaging in tissues using spectral and polarization filtering. Optics Express 7, 23–28 (2000).
Dunn, A.K., Bolay, T., Moskowitz, M.A. & Boas, D.A. Dynamic imaging of cerebral blood flow using laser speckle. J. Cerebral Blood Flow Metabol. 21, 195–201 (2001).
Tearney, G. et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039 (1997).
Brown, E.B. et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat. Med. 7, 864–868 (2001).
Muller, M.G., Georgakoudi, I., Zhang, Q., Wu, J. & Feld, M.S. Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption. Appl. Opt. 40, 4633–4646 (2001).
Williams, R.M., Zipfel, W.R. & Webb, W.W. Multiphoton microscopy in biological research. Curr. Opin. Chem. Biol. 5, 603–608 (2001).
Gonzalez, S., Rajadhyaksha, M., Gonzalez-Serva, A., White, W.M. & Anderson, R.R. Confocal reflectance imaging of folliculitis in vivo: correlation with routine histology. J. Cutan. Pathol. 26, 201–205 (1999).
Ito, S. et al. Detection of human gastric cancer in resected specimens using a novel infrared fluorescent anti-human carcinoembryonic antigen antibody with an infrared fluorescence endoscope in vitro. Endoscopy 33, 849–853 (2001).
Marten, K. et al. Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice. Gastroenterology 122, 406–414 (2002).
Kuroiwa, T., Kajimoto, Y. & Ohta, T. Development and clinical application of near-infrared surgical microscope: preliminary report. Minim. Invasive Neurosurg. 44, 240–242 (2001).
Richards-Kortum, R. & Sevick-Muraca, E. Quantitative optical spectroscopy for tissue diagnosis. Annu. Rev. Physical Chem. 47, 555–606 (1996).
Wang, T.D. et al. In vivo identification of colonic dysplasia using fluorescence endoscopic imaging. Gastrointest. Endosc. 49, 447–455 (1999).
Mahmood, U., Tung, C.H., Bogdanov, A., Jr. & Weissleder, R. Near-infrared optical imaging of protease activity for tumor detection. Radiology 213, 866–870 (1999).
Ntziachristos, V., Tung, C., Bremer, C. & Weissleder, R. Fluorescence-mediated tomography resolves protease activity in vivo. Nat. Med. 8, 575–560 (2002).
Ntziachristos, V. & Weissleder, R. Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media. Med. Phys. 29, 803–809 (2002).
Hawrysz, D.J. & Sevick-Muraca, E.M. Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents. Neoplasia 2, 388–417 (2000).
Ntziachristos, V., Yodh, A.G., Schnall, M. & Chance, B. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
Achilefu, S., Dorshow, R.B., Bugaj, J.E. & Rajagopalan, R. Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. Invest. Radiol. 35, 479–485 (2000).
Licha, K. et al. Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes. Bioconjug. Chem. 12, 44–50 (2001).
Becker, A. et al. Receptor-targeted optical imaging of tumors with near-infrared flurorescent ligands. Nat. Biotechnol. 19, 327–331 (2001).
Tung, C.H., Lin, Y., Moon, W. & Weissleder, R. Receptor-targeted near-infrared fluorescence probe for in vivo tumor detection. ChemBioChem 3, 784–786 (2002).
Ballou, B. et al. Tumor labeling in vivo using cyanine-conjugated monoclonal antibodies. Cancer Immunol. Immunother. 41, 257–263 (1995).
Neri, D. et al. Targeting by affinity-matured recombinant antibody fragments on an angiogenesis-associated fibronectin isoform. Nat. Biotechnol. 15, 1271–1275 (1997).
Muguruma, N. et al. Antibodies labeled with fluorescence-agent excitable by infrared rays. J. Gastroenterol. 33, 467–471 (1998).
Folli, S. et al. Antibody–indocyanin conjugates for immunophotodetection of human squamous cell carcinoma in nude mice. Cancer Res. 54, 2643–2649 (1994).
Zaheer, A. et al. In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat. Biotechnol. 19, 1148–1154 (2001).
Weissleder, R., Tung, C.H., Mahmood, U. & Bogdanov, A., Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17, 375–378 (1999).
Tung, C.H., Mahmood, U., Bredow, S. & Weissleder, R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res. 60, 4953–4958 (2000).
Bogdanov, A.A., Jr., Lin, C.P., Simonova, M., Matuszewski, L. & Weissleder, R. Cellular activation of the self-quenched fluorescent reporter probe in tumor microenvironment. Neoplasia 4, 228–236 (2002).
Bremer, C., Tung, C.H. & Weissleder, R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat. Med. 7, 743–748 (2001).
Slakter, J.S., Yannuzzi, L.A., Guyer, D.R., Sorenson, J.A. & Orlock, D.A. Indocyanine-green angiography. Curr. Opin. Ophthalmol. 6, 25–32 (1995).
Hope-Ross, M. et al. Adverse reactions due to indocyanine green. Ophthalmology 101, 529–533 (1994).
Riefke, B., Licha, K., Semmler, W., Nolte, D. & Rinneberg, H. In vivo characterization of cyanine dyes as contrast agents for near-infrared imaging. SPIE 2927, 199–208 (1996).
Licha, K. et al. Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem. Photobiol. 72, 392–398 (2000).
Lin, Y., Weissleder, R. & Tung, C.H. Novel near-infrared cyanine fluorochromes: synthesis, properties, and bioconjugation. Bioconjug. Chem. 13, 605–610 (2002).
Matz, M.V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17, 969–973 (1999).
Gurskaya, N.G. et al. GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett. 507, 16–20 (2001).
Labas, Y.A. et al. Diversity and evolution of the green fluorescent protein family. Proc. Natl. Acad. Sci. USA 99, 4256–4261 (2002).
Hoffman, R.M. Visualization of GFP-expressing tumors and metastasis in vivo. Biotechniques 30, 1016–1022, 1024–1026 (2001).
Yang, M. et al. Whole-body optical imaging of green fluorescent protein–expressing tumors and metastases. Proc. Natl. Acad. Sci. USA 97, 1206–1211 (2000).
Moore, A., Sergeyev, N., Bredow, S. & Weissleder, R. A model system to quantitate tumor burden in locoregional lymph nodes during cancer spread. Invasion Metastasis 18, 192–197 (1998).
Wunderbaldinger, P., Josephson, L., Bremer, C., Moore, A. & Weissleder, R. Detection of lymph node metastases by contrast-enhanced MRI in an experimental model. Magn. Reson. Med. 47, 292–297 (2002).
Yang, M., Baranov, E., Moossa, A.R., Penman, S. & Hoffman, R.M. Visualizing gene expression by whole-body fluorescence imaging. Proc. Natl. Acad. Sci. USA 97, 12278–12282 (2000).
Fukumura, D. et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 94, 715–725 (1998).
Moore, A., Marecos, E., Simonova, M., Weissleder, R. & Bogdanov, A., Jr. Novel gliosarcoma cell line expressing green fluorescent protein: a model for quantitative assessment of angiogenesis. Microvasc. Res. 56, 145–153 (1998).
Hastings, J.W. Chemistries and colors of bioluminescent reactions: a review. Gene 173, 5–11 (1996).
Contag, C.H., Jenkins, D., Contag, P.R. & Negrin, R.S. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2, 41–52 (2000).
Contag, C.H. et al. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem. Photobiol. 66, 523–531 (1997).
Contag, C.H. & Stevenson, D.K. In vivo patterns of heme oxygenase-1 transcription. J. Perinatol. 21 (Suppl. 1), S119–124; discussion S125–127 (2001).
Contag, P., Olomu, I., Stevenson, D. & Contag, C. Bioluminescent indicators in living mammals. Nat. Med. 4, 245–247 (1998).
Bhaumik, S. & Gambhir, S.S. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc. Natl. Acad. Sci. USA 99, 377–382 (2002).
Wetterwald, A. et al. Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am. J. Pathol. 160, 1143–1153 (2002).
Costa, G.L. et al. Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T-cell delivery of the IL-12 p40 subunit. J. Immunol. 167, 2379–2387 (2001).
Burns, S.M. et al. Revealing the spatiotemporal patterns of bacterial infectious diseases using bioluminescent pathogens and whole body imaging. Contrib. Microbiol. 9, 71–88 (2001).
Weng, Y.H., Tatarov, A., Bartos, B.P., Contag, C.H. & Dennery, P.A. HO-1 expression in type II pneumocytes after transpulmonary gene delivery. Am. J. Physiol. Lung Cell Mol. Physiol. 278, L1273–1279 (2000).
Wu, J.C., Sundaresan, G., Iyer, M. & Gambhir, S.S. Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol. Ther. 4, 297–306 (2001).
Honigman, A. et al. Imaging transgene expression in live animals. Mol. Ther. 4, 239–249 (2001).
Zhang, W. et al. Rapid in vivo functional analysis of transgenes in mice using whole body imaging of luciferase expression. Transgenic Res. 10, 423–434 (2001).
Vooijs, M., Jonkers, J., Lyons, S. & Berns, A. Noninvasive imaging of spontaneous retinoblastoma pathway-dependent tumors in mice. Cancer Res. 62, 1862–1867 (2002).
Ray, P. et al. Noninvasive quantitative imaging of protein–protein interactions in living subjects. Proc. Natl. Acad. Sci. USA 99, 3105–3110 (2002).
Carlsen, H., Moskaug, J.O., Fromm, S.H. & Blomhoff, R. In vivo imaging of NF-κB activity. J. Immunol. 168, 1441–1446 (2002).
Louie, A.Y. et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol. 18, 321–325 (2000).
Moats, R.A., Fraser, S.E. & Meade, T.J. A “smart” magnetic resonance imaging agent that reports on specific enzymatic activity. Angew. Chem. Int. Edn. Engl. 36, 726–731 (1997).
Bogdanov, A., Matuszewski, L., Bremer, C., Petrovsky, A. & Weissleder, R. Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Molec. Imag. 1, 1–9 (2002).
Josephson, L., Perez, J. & Weissleder, R. Magnetic nanosensors for the detection of oligonucleotide sequences. Angew. Chem. Int. Edn. Engl. 40, 3204–3206 (2001).
Perez, J.M., O'Loughin, T., Simeone, F.J., Weissleder, R. & Josephson, L. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J. Am. Chem. Soc. 124, 2856–2857 (2002).
Perez, J.M., Josephson, L., O'Loughin, T., Hogeman, D. & Weissleder, R. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20, 816–820 (2002).
Josephson, L., Kircher, M.F., Mahmood, U., Tang, Y. & Weissleder, R. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug. Chem. 13, 554–560 (2002).
Huber, M.M. et al. Fluorescently detectable magnetic resonance imaging agents. Bioconjug. Chem. 9, 242–249 (1998).
Georgakoudi, I., Mueller, M.G. & Feld, M.S. Intrinsic fluorescence spectroscopy of biological tissue in Fluorescence in Biomedicine (Marcel Dekker, New York, 2002).
Ji, H. et al. Arthritis critically dependent on innate immune system players. Immunity 16, 157–168 (2002).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Weissleder, R., Ntziachristos, V. Shedding light onto live molecular targets. Nat Med 9, 123–128 (2003). https://doi.org/10.1038/nm0103-123
Issue Date:
DOI: https://doi.org/10.1038/nm0103-123
This article is cited by
-
Akaluc/AkaLumine bioluminescence system enables highly sensitive, non-invasive and temporal monitoring of gene expression in Drosophila
Communications Biology (2023)
-
Development of two mouse strains conditionally expressing bright luciferases with distinct emission spectra as new tools for in vivo imaging
Lab Animal (2023)
-
An Aggregation-induced Emission Probe to Detect the Viscosity Change in Lipid Droplets during Ferroptosis
Journal of Fluorescence (2023)
-
Neurotoxin-Derived Optical Probes for Biological and Medical Imaging
Molecular Imaging and Biology (2023)
-
Highlighting the Undetectable — Fluorescence Molecular Imaging in Gastrointestinal Endoscopy
Molecular Imaging and Biology (2023)