Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

A post-genomic perspective

The complete genome sequence of Mycobacterium tuberculosis, along with novel genetic tools, provides the foundation for a new era of post-genomic research. The challenge is now to translate these opportunities into an improved understanding of the complex biology of tuberculosis infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  Google Scholar 

  2. Behr, M.A. et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284, 1520–1523 (1999).

    Article  CAS  Google Scholar 

  3. Wilson, M. et al. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc. Natl. Acad. Sci. USA 96, 12833–12838 (1999).

    Article  CAS  Google Scholar 

  4. Jungblut, P.R. et al. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol. Microbiol. 33, 1103–1117 (1999).

    Article  CAS  Google Scholar 

  5. Hatfull, G.F. & Jacobs, W.R. Molecular Genetics of Mycobacteria (ASM Press, Washington, DC, 2000).

    Google Scholar 

  6. Duncan, K. & Sacchettini, J.C. in Molecular Genetics of Mycobacteria (eds. Hatfull, G.F. & Jacobs, W.R.) 297–307 (ASM Press, Washington, DC, 2000).

    Google Scholar 

  7. Sreevatsan, S. et al. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc. Natl. Acad. Sci. USA 94, 9869–9874 (1997).

    Article  CAS  Google Scholar 

  8. Gordon, S.V. et al. Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol. Microbiol. 32, 643–655 (1999).

    Article  CAS  Google Scholar 

  9. Ho, T.B.L., Robertson, B.D., Taylor, G.M., Shaw, R.J. & Young, D.B. Comparison of Mycobacterium tuberculosis genomes reveals frequent deletions in a 20kb variable region in clinical isolates. Yeast 17, 272–282 (2000).

    Article  CAS  Google Scholar 

  10. Brosch, R., Gordon, S.V., Eiglmeier, K., Garnier, T. & Cole, S.T. Comparative genomics of the leprosy and tubercle bacilli. Res. Microbiol. 151, 135–142 (2000).

    Article  CAS  Google Scholar 

  11. Musser, J.M., Amin, A. & Ramaswamy, S. Negligible genetic diversity of Mycobacterium tuberculosis host immune system protein targets: evidence of limited selective pressure. Genetics 155, 7–16 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dillon, D.C. et al. Molecular characterization and human T-cell responses to a member of a novel Mycobacterium tuberculosis mtb39 gene family. Infect. Immun. 67, 2941–2950 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramakrishnan, L., Federspiel, N.A. & Falkow, S. Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288, 1436–1439 (2000).

    Article  CAS  Google Scholar 

  14. Opie, E.L. & Aronson, J.D. Tubercle bacilli in latent tuberculous lesions and in lung tissue without tuberculous lesions. Arch. Pathol. 4, 1 (1927).

    Google Scholar 

  15. Rich, A.R. The Pathogenesis of Tuberculosis (Blackwell Scientific Publications, Oxford, 1951).

    Google Scholar 

  16. Wayne, L.G. & Lin, K.Y. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect. Immun. 37, 1042–1049 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. McCune, R.M., Feldman, F.M., Lambert, H.P. & McDermott, W. Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. J. Exp. Med. 123, 445–468 (1966).

    Article  CAS  Google Scholar 

  18. Wallace, J. G. 1961. The heat resistance of tubercle in the lungs of infected mice. Am. Rev. Respir. Dis. 83, 866–871 (1961).

    CAS  PubMed  Google Scholar 

  19. Rees, R.J.W. & Hart, P.D. Analysis of host-parasite equilibrium in chronic murine tuberculosis by total and viable bacillary counts. Br. J. Exp. Pathol. 42, 83–88 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Glickman, M.S., Cox, J.S. & Jacobs, W.R. Jr. A novel mycolic acid cyclopropane synthetase is required for coding, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell 5, 717–727 (2000).

    Article  CAS  Google Scholar 

  21. McKinney, J.D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735–738 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, D. A post-genomic perspective. Nat Med 7, 11–13 (2001). https://doi.org/10.1038/83250

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/83250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing