Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells

Abstract

Intrathymic expression of tissue-specific self antigens may be involved in immunological tolerance and protection from autoimmune disease. We have analyzed the role of T-cell tolerance to proteolipid protein (PLP), the main protein of the myelin sheath, in susceptibility to experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Intrathymic expression of PLP was largely restricted to the shorter splice variant, DM20. Expression of DM20 by thymic epithelium was sufficient to confer T-cell tolerance to all epitopes of PLP in EAE-resistant C57BL/6 mice. In contrast, the major T-cell epitope in SJL/J mice was only encoded by the central nervous system-specific exon of PLP, but not by thymic DM20. Thus, lack of tolerance to this epitope offers an explanation for the exquisite susceptibility of SJL/J mice to EAE. As PLP expression in the human thymus is also restricted to the DM20 isoform, these findings have implications for selection of the autoimmune T-cell repertoire in multiple sclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tolerance to PLP by radio-resistant thymic epithelium and hemopoietic cells.
Figure 3: PLP-specific T-cell epitopes in BL/6 wild type, BL/6 PLP-deficient and SJL/J mice.
Figure 2: PLP expression in thymus of mouse and human.

Similar content being viewed by others

References

  1. Kisielow, P. & von Boehmer, H. Development and selection of T cells: facts and puzzles. Adv. Immunol. 58, 87–209 (1995).

    Article  CAS  Google Scholar 

  2. Stockinger, B. T lymphocyte tolerance: From thymic deletion to peripheral control mechansims . Adv. Immunol. 71, 229– 265 (1999).

    Article  CAS  Google Scholar 

  3. Anderton, S., Burkhart, C., Metzler, B. & Wraith, D. Mechanisms of central and peripheral T-cell tolerance: lessons from experimental models of multiple sclerosis. Immunol. Rev. 169, 123–137 (1999).

    Article  CAS  Google Scholar 

  4. Alferink, J., Aigner, S., Reibke, R., Hämmerling, G.J. & Arnold, B. Peripheral T-cell tolerance: the contribution of permissive T-cell migration into parenchymal tissues in the neonate. Immunol. Rev. 169, 255–261 ( 1999).

    Article  CAS  Google Scholar 

  5. Kojima, K., Reindl, M., Lassmann, H. & Wekerle, H., The thymus and self tolerance: Co-existence of encephalitogenic S100β-specific T cells and their nominal autoantigen in the normal adult rat thymus. Int. Immunol. 9, 897–904 (1997).

    Article  CAS  Google Scholar 

  6. Hanahan, D., Peripheral-antigen-expressing cells in thymic medulla: factors in self- tolerance and autoimmunity. Curr. Opin. Immunol. 10, 656–662 (1998).

    Article  CAS  Google Scholar 

  7. Klein, L., Klein, T., Rüther, U. & Kyewski, B. CD4 T-cell tolerance to human C-reactive protein, an inducible serum protein, is mediated by medullary thymic epithelium. J. Exp. Med. 188, 5–16 (1998).

    Article  CAS  Google Scholar 

  8. Heath, V.L., Moore, N.C., Parnell, S.M. & Mason, D.W. Intrathymic expression of genes involved in organ specific autoimmune disease . J. Autoimmun. 11, 309– 318 (1998).

    Article  CAS  Google Scholar 

  9. Sospedra, M., et al. Transcription of a broad range of self-antigens in human thymus suggests a role for central mechanisms in tolerance toward peripheral antigens . J. Immunol. 161, 5918– 5929 (1998).

    CAS  Google Scholar 

  10. Steinman, L. Multiple sclerosis: A coordinated immunological attack against myelin in the central nervous system. Cell 85, 299– 302 (1996).

    Article  CAS  Google Scholar 

  11. Nave, K.A., Lai, C., Bloom, F.E. & Milner, R.J. Splice site selection in the proteolipid protein (PLP) gene transcript and primary structure of the DM-20 protein of central nervous system myelin. Proc. Natl. Acad. Sci. USA 84, 5665–5669 (1987).

    Article  CAS  Google Scholar 

  12. Pribyl, T.M., Campagnoni, C., Kampf, K., Handley, V.W. & and Campangnoni, A.T. The major myelin protein genes are expressed in the human thymus. J. Neurosci. Res. 45, 812–819 (1996).

    Article  CAS  Google Scholar 

  13. Voskuhl, R.R. Myelin protein expression in lymphoid tissues: Implications for peripheral tolerance. Immunol. Rev. 164, 81– 92 (1998).

    Article  CAS  Google Scholar 

  14. Martin, R., McFarland, H.F. & McFarlin, D.E. Immunological aspects of demyelinating diseases. Annu. Rev. Immunol. 10, 153–187 (1992).

    Article  CAS  Google Scholar 

  15. Wekerle, H. Experimental autoimmune encephalomyelitis as a model of immune-mediated CNS disease. Curr. Opin. Neurobiol. 3, 779– 784 (1993).

    Article  CAS  Google Scholar 

  16. Tuohy, V.K., Sobel, R.A. & Lees, M.B. Myelin proteolipid protein-induced experimental allergic encephalomyelitis. Variations of disease susceptibility in different strains of mice. J. Immunol. 140, 1868– 1873 (1988).

    CAS  PubMed  Google Scholar 

  17. Encinas, J.A., et al. Genetic analysis of susceptibility to experimental autoimmune encephalomyelitis in a cross between SJL/J and B10.S mice. J. Immunol. 157, 2186–2192 ( 1996).

    CAS  PubMed  Google Scholar 

  18. Butterfield, R.J., et al. New genetic loci that control susceptibility and symptoms of experimental allergic encephalomyelitis in inbred mice. J. Immunol. 161, 1860–1867 ( 1998).

    CAS  PubMed  Google Scholar 

  19. Encinas, J.A., et al. QTL influencing autoimmune diabetes and encephalomyelitis map to a 0.15-cM region containing IL2. Nature Genet. 21, 158–160 (1999).

    Article  CAS  Google Scholar 

  20. Wekerle, H., Bradl, M., Linington, C., Kaab, G. & Kojima, K. The shaping of the brain-specific T lymphocyte repertoire in the thymus. Immunol. Rev. 149, 231– 243 (1996).

    Article  CAS  Google Scholar 

  21. Harrington, C.J., et al. Differential tolerance is induced in T-cells recognizing distinct epitopes of myelin basic protein. Immunity 8, 571–580 (1998).

    Article  CAS  Google Scholar 

  22. Targoni, O.S. & Lehmann, P.V. Endogenous myelin basic protein inactivates the high avidity T cell repertoire. J. Exp. Med. 187, 2055–2065 (1998).

    Article  CAS  Google Scholar 

  23. Klugmann, M., et al. Assembly of CNS myelin in the absence of proteolipid protein . Neuron 18, 59–70 (1997).

    CAS  Google Scholar 

  24. Oukka, M., et al. CD4 T-cell tolerance to nuclear proteins induced by medullary thymic epithelium. Immunity 4, 545– 553 (1996).

    Article  CAS  Google Scholar 

  25. Smith, K.M., Olson, D.C., Hirose, R. & Hanahan, D. Pancreatic gene expression in rare cells of the thymic medulla: Evidence for functional contribution to T-cell tolerance. Int. Immunol. 9, 1355 –1365 (1997).

    Article  CAS  Google Scholar 

  26. Fritz, R.B. & Zhao, M.-L. Active and passive experimental autoimmune encephalomyelitis in strain 129/J (H-2b) mice. J. Neurosc. Res. 45, 471–474 (1996).

    Article  CAS  Google Scholar 

  27. Tuohy, V.K., Zu, Z., Sobel, R.A., Laursen, R.A. & Lees, M.B. Identification of an encephalitogenic determinant of myelin proteolipid protein for SJL/J mice. J. Immunol. 142, 1523–1527 (1989).

    CAS  Google Scholar 

  28. Greer, J.M., Kuchroo, V.K., Sobel, R.A. & Lees, M.B. Identification and characterization of a second encephalitogenic determinant of myelin proteolipid protein (178–191) for SJL/J mice. J. Immunol. 149, 783–788 (1992)

    CAS  Google Scholar 

  29. Greer, J.M., et al. Immunogenic and encephalitogenic epitope clusters of myelin proteolipid protein. J. Immunol. 156, 371 –379 (1995).

    Google Scholar 

  30. Tuohy, V.K. & Thomas, D.M. Sequence 104–117 of myelin proteolipid protein is a cryptic encephalitogenic T-cell determinant for SJL/J mice. J. Neuroimmunol. 56, 161– 170 (1995).

    Article  CAS  Google Scholar 

  31. Miller, S.D., et al. Evolution of the T-cell repertoire during the course of experimental immune-mediated demyelinating diseases. Immunol. Rev. 144, 225–244 (1995).

    Article  CAS  Google Scholar 

  32. McRae, B.L., Vanderlugt, C.L., Dal Canto, M.C. & Miller, S.D. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J. Exp. Med. 182, 75–85 (1995).

    Article  CAS  Google Scholar 

  33. Yu, M., Johnson, J.M. & Tuohy, V.K. A predictable sequential determinant spreading cascade invariably accompanies progression of experimental autoimmune encephalomyelitis: A basis for peptide-specific therapy after onset of clinical disease. J. Exp. Med. 183, 377–383 (1996).

    Google Scholar 

  34. Miller, S.D., et al. Persistent infection with Theiler's virus leads to CNS autoimmunity via epitope spreading. Nature Med. 3, 1333 –1136 (1997).

    Google Scholar 

  35. Vanderlugt, C.L., et al. The functional significance of epitope spreading and its regulation by co-stimulatory molecules. Immunol. Rev. 164, 63–72 (1998).

    Article  CAS  Google Scholar 

  36. Tuohy, V.K., et al. The epitope spreading cascade during progression of experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol. Rev. 164, 93–110 ( 1998).

    Article  CAS  Google Scholar 

  37. Segal, B.M. & Shevach, E.M. IL-12 unmasks latent autoimmune disease in resistant mice. J. Exp. Med. 184, 771–775 (1996).

    Article  CAS  Google Scholar 

  38. Chang, J.T., Shevach, E.M. & Segal, B.M. Regulation of interleukin (IL)-12 receptor beta2 subunit expression by endogenous IL-12: a critical step in the differentiation of pathogenetic autoreactive T cells. J. Exp. Med. 189 , 969–978 (1999).

    Article  CAS  Google Scholar 

  39. Markovic-Plese, S., et al. T cell recognition of immunodominant and cryptic proteolipid protein epitopes in humans. J. Immunol. 155, 982–992 (1995).

    CAS  PubMed  Google Scholar 

  40. Trotter, J., et al. T cell recognition of myelin proteolipid protein and myelin proteolipid peptides in the peripheral blood of multiple sclerosis and control subjects. J. Neuroimmunol. 15, 172– 178 (1998).

    Article  Google Scholar 

  41. Tuohy, V.K., Yu, M., Kawcak, J.A. & Kinkel, R.P. Spontaneous regression of primary autoreactivity during chronic progression of experimental autoimmune encephalomyelitis and multiple sclerosis. J. Exp. Med. 189, 1033–1042 (1999).

    Article  CAS  Google Scholar 

  42. Tuohy, V.K., Yu, M., Weinstock-Guttman, B. & Kinkel, R.P. Diversity and plasticity of self recognition during the development of multiple sclerosis. J. Clin. Invest . 99, 1682– 1690 (1997).

    Article  CAS  Google Scholar 

  43. Egwuagu, C.E., Charukamnoetkanok, P. & Gery, I. Thymic expression of autoantigens correlates with resistance to autoimmune disease. J. Immunol. 159, 3109–3112 (1997).

    CAS  Google Scholar 

  44. Pugliese, A., et al. The Insulin gene is transcribed in the human thymus and transcription levels correlate with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nature Genet. 15, 293–297 (1997).

    Article  CAS  Google Scholar 

  45. Vafiadis, P., et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nature Genet. 15, 289–292 (1997).

    Article  CAS  Google Scholar 

  46. Kyewski, B.A., Fathman, C.G. & Rouse, R.V. Intrathymic presentation of circulating non-MHC antigens by medullary dendritic cells. An antigen-dependent microenvironment for T cell differentiation. J. Exp. Med. 163, 231–246 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Arnold and J. Trotter for suggestions on the manuscript; K. Hexel for support in cell sorting; and S. Hagl (Department of Cardiac Surgery, University of Heidelberg, Germany) for providing human thymic tissue. Support of this study by the German Cancer Research Center, the Deutsche Forschungsgemeinschaft (DFG Ky 7/-1 to B.K.), the International Agency for Research on Cancer (Research Training Fellowship to L.K.), and the National Institutes of Health (grants NS 36054 and NS 37476 to V.K.T.) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Kyewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, L., Klugmann, M., Nave, KA. et al. Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nat Med 6, 56–61 (2000). https://doi.org/10.1038/71540

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71540

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing