Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite

An Author Correction to this article was published on 14 December 2018

Abstract

Development of a highly effective vaccine or antibodies for the prevention and ultimately elimination of malaria is urgently needed. Here we report the isolation of a number of human monoclonal antibodies directed against the Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP) from several subjects immunized with an attenuated Pf whole-sporozoite (SPZ) vaccine (Sanaria PfSPZ Vaccine). Passive transfer of one of these antibodies, monoclonal antibody CIS43, conferred high-level, sterile protection in two different mouse models of malaria infection. The affinity and stoichiometry of CIS43 binding to PfCSP indicate that there are two sequential multivalent binding events encompassing the repeat domain. The first binding event is to a unique 'junctional' epitope positioned between the N terminus and the central repeat domain of PfCSP. Moreover, CIS43 prevented proteolytic cleavage of PfCSP on PfSPZ. Analysis of crystal structures of the CIS43 antigen-binding fragment in complex with the junctional epitope determined the molecular interactions of binding, revealed the epitope's conformational flexibility and defined Asn-Pro-Asn (NPN) as the structural repeat motif. The demonstration that CIS43 is highly effective for passive prevention of malaria has potential application for use in travelers, military personnel and elimination campaigns and identifies a new and conserved site of vulnerability on PfCSP for next-generation rational vaccine design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolation and binding specificity of monoclonal antibodies from rPfCSP-specific memory B cells.
Figure 2: PfCSP-specific monoclonal antibodies provide protection against malaria infection.
Figure 3: Epitope mapping and ITC analysis of CIS43.
Figure 4: Crystal structures of the CIS43 antigen-binding fragment in complex with PfCSP peptides.
Figure 5: Monoclonal antibody CIS43 affects cleavage of PfCSP on PfSPZ.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Ménard, R. et al. Circumsporozoite protein is required for development of malaria sporozoites in mosquitoes. Nature 385, 336–340 (1997).

    Article  PubMed  Google Scholar 

  2. Coppi, A. et al. Heparan sulfate proteoglycans provide a signal to Plasmodium sporozoites to stop migrating and productively invade host cells. Cell Host Microbe 2, 316–327 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ancsin, J.B. & Kisilevsky, R. A binding site for highly sulfated heparan sulfate is identified in the N terminus of the circumsporozoite protein: significance for malarial sporozoite attachment to hepatocytes. J. Biol. Chem. 279, 21824–21832 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Rathore, D., Sacci, J.B., de la Vega, P. & McCutchan, T.F. Binding and invasion of liver cells by Plasmodium falciparum sporozoites. Essential involvement of the amino terminus of circumsporozoite protein. J. Biol. Chem. 277, 7092–7098 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Dame, J.B. et al. Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparum. Science 225, 593–599 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Enea, V. et al. DNA cloning of Plasmodium falciparum circumsporozoite gene: amino acid sequence of repetitive epitope. Science 225, 628–630 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Nussenzweig, R.S. & Nussenzweig, V. Antisporozoite vaccine for malaria: experimental basis and current status. Rev. Infect. Dis. 11 (Suppl. 3), S579–S585 (1989).

    Article  PubMed  Google Scholar 

  8. Casares, S., Brumeanu, T.D. & Richie, T.L. The RTS,S malaria vaccine. Vaccine 28, 4880–4894 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. White, M.T. et al. The relationship between RTS,S vaccine-induced antibodies, CD4+ T cell responses and protection against Plasmodium falciparum infection. PLoS One 8, e61395 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stoute, J.A. et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. RTS,S Malaria Vaccine Evaluation Group. N. Engl. J. Med. 336, 86–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Foquet, L. et al. Vaccine-induced monoclonal antibodies targeting circumsporozoite protein prevent Plasmodium falciparum infection. J. Clin. Invest. 124, 140–144 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Oyen, D. et al. Structural basis for antibody recognition of the NANP repeats in Plasmodium falciparum circumsporozoite protein. Proc. Natl. Acad. Sci. USA 114, E10438–E10445 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olotu, A. et al. Four-year efficacy of RTS,S/AS01E and its interaction with malaria exposure. N. Engl. J. Med. 368, 1111–1120 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Olotu, A. et al. Seven-year efficacy of RTS,S/AS01 malaria vaccine among young African children. N. Engl. J. Med. 374, 2519–2529 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Triller, G. et al. Natural parasite exposure induces protective human anti-malarial antibodies. Immunity 47, 1197–1209.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoffman, S.L. et al. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Hum. Vaccin 6, 974–106 (2010).

    Article  Google Scholar 

  17. Seder, R.A. et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341, 1359–1365 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Briney, B.S., Willis, J.R., Hicar, M.D., Thomas, J.W. II & Crowe, J.E. Jr. Frequency and genetic characterization of V(DD)J recombinants in the human peripheral blood antibody repertoire. Immunology 137, 56–64 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. March, S. et al. A microscale human liver platform that supports the hepatic stages of Plasmodium falciparum and vivax. Cell Host Microbe 14, 104–115 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. March, S. et al. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nat. Protoc. 10, 2027–2053 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Espinosa, D.A. et al. Robust antibody and CD8+ T-cell responses induced by P. falciparum CSP adsorbed to cationic liposomal adjuvant CAF09 confer sterilizing immunity against experimental rodent malaria infection. NPJ. Vaccines 2, 10 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Nardin, E.H. et al. Circumsporozoite proteins of human malaria parasites Plasmodium falciparum and Plasmodium vivax. J. Exp. Med. 156, 20–30 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. Zavala, F. et al. Rationale for development of a synthetic vaccine against Plasmodium falciparum malaria. Science 228, 1436–1440 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Sack, B.K. et al. Humoral protection against mosquito bite-transmitted Plasmodium falciparum infection in humanized mice. NPJ Vaccines 2, 27 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kublin, J.G. et al. Complete attenuation of genetically engineered Plasmodium falciparum sporozoites in human subjects. Sci. Transl. Med. 9, eaad9099 (2017).

    Article  PubMed  CAS  Google Scholar 

  26. Vanderberg, J.P. & Frevert, U. Intravital microscopy demonstrating antibody-mediated immobilisation of Plasmodium berghei sporozoites injected into skin by mosquitoes. Int. J. Parasitol. 34, 991–996 (2004).

    Article  PubMed  Google Scholar 

  27. Sack, B.K. et al. Model for in vivo assessment of humoral protection against malaria sporozoite challenge by passive transfer of monoclonal antibodies and immune serum. Infect. Immun. 82, 808–817 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Epstein, J.E. et al. Safety and clinical outcome of experimental challenge of human volunteers with Plasmodium falciparum–infected mosquitoes: an update. J. Infect. Dis. 196, 145–154 (2007).

    Article  PubMed  Google Scholar 

  29. Rickman, L.S. et al. Plasmodium falciparum–infected Anopheles stephensi inconsistently transmit malaria to humans. Am. J. Trop. Med. Hyg. 43, 441–445 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Freire, E., Schön, A. & Velazquez-Campoy, A. Isothermal titration calorimetry: general formalism using binding polynomials. Methods Enzymol. 455, 127–155 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Fisher, C.R. et al. T-dependent B cell responses to Plasmodium induce antibodies that form a high-avidity multivalent complex with the circumsporozoite protein. PLoS Pathog. 13, e1006469 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Plassmeyer, M.L. et al. Structure of the Plasmodium falciparum circumsporozoite protein, a leading malaria vaccine candidate. J. Biol. Chem. 284, 26951–26963 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ghasparian, A., Moehle, K., Linden, A. & Robinson, J.A. Crystal structure of an NPNA-repeat motif from the circumsporozoite protein of the malaria parasite Plasmodium falciparum. Chem. Commun. (Camb.) 174–176, 174–176 (2006).

    Article  Google Scholar 

  34. Dyson, H.J., Satterthwait, A.C., Lerner, R.A. & Wright, P.E. Conformational preferences of synthetic peptides derived from the immunodominant site of the circumsporozoite protein of Plasmodium falciparum by 1H NMR. Biochemistry 29, 7828–7837 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Topchiy, E. et al. T1BT* structural study of an anti-plasmodial peptide through NMR and molecular dynamics. Malar. J. 12, 104 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Coppi, A., Pinzon-Ortiz, C., Hutter, C. & Sinnis, P. The Plasmodium circumsporozoite protein is proteolytically processed during cell invasion. J. Exp. Med. 201, 27–33 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Espinosa, D.A. et al. Proteolytic cleavage of the Plasmodium falciparum circumsporozoite protein is a target of protective antibodies. J. Infect. Dis. 212, 1111–1119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aurrecoechea, C. et al. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 37, D539–D543 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Rich, S.M., Hudson, R.R. & Ayala, F.J. Plasmodium falciparum antigenic diversity: evidence of clonal population structure. Proc. Natl. Acad. Sci. USA 94, 13040–13045 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zeeshan, M. et al. Genetic variation in the Plasmodium falciparum circumsporozoite protein in India and its relevance to RTS,S malaria vaccine. PLoS One 7, e43430 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zakeri, S., Avazalipoor, M., Mehrizi, A.A., Djadid, N.D. & Snounou, G. Restricted T-cell epitope diversity in the circumsporozoite protein from Plasmodium falciparum populations prevalent in Iran. Am. J. Trop. Med. Hyg. 76, 1046–1051 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Tanabe, K. et al. Within-population genetic diversity of Plasmodium falciparum vaccine candidate antigens reveals geographic distance from a Central sub-Saharan African origin. Vaccine 31, 1334–1339 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Gaudinski, M.R. et al. Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: a phase 1 open-label clinical trial in healthy adults. PLoS Med. 15, e1002493 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wu, X. et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329, 856–861 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ishizuka, A.S. et al. Protection against malaria at 1 year and immune correlates following PfSPZ vaccination. Nat. Med. 22, 614–623 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Lyke, K.E. et al. Attenuated PfSPZ Vaccine induces strain-transcending T cells and durable protection against heterologous controlled human malaria infection. Proc. Natl. Acad. Sci. USA 114, 2711–2716 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wheatley, A.K. et al. H5N1 vaccine–elicited memory B cells are genetically constrained by the IGHV locus in the recognition of a neutralizing epitope in the hemagglutinin stem. J. Immunol. 195, 602–610 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Kanekiyo, M. et al. Rational design of an Epstein–Barr virus vaccine targeting the receptor-binding site. Cell 162, 1090–1100 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liao, H.X. et al. High-throughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies. J. Virol. Methods 158, 171–179 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tiller, T. et al. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J. Immunol. Methods 329, 112–124 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Lefranc, M.P. et al. IMGT, the international immunogenetics information system. Nucleic Acids Res. 37, D1006–D1012 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Bonsignori, M. et al. Analysis of a clonal lineage of HIV-1 envelope V2/V3 conformational epitope-specific broadly neutralizing antibodies and their inferred unmutated common ancestors. J. Virol. 85, 9998–10009 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Douglas, A.D. et al. Neutralization of Plasmodium falciparum merozoites by antibodies against PfRH5. J. Immunol. 192, 245–258 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Bruña-Romero, O. et al. Detection of malaria liver-stages in mice infected through the bite of a single Anopheles mosquito using a highly sensitive real-time PCR. Int. J. Parasitol. 31, 1499–1502 (2001).

    Article  PubMed  Google Scholar 

  56. Vaughan, A.M. et al. A transgenic Plasmodium falciparum NF54 strain that expresses GFP-luciferase throughout the parasite life cycle. Mol. Biochem. Parasitol. 186, 143–147 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Miller, J.L. et al. Quantitative bioluminescent imaging of pre-erythrocytic malaria parasite infection using luciferase-expressing Plasmodium yoelii. PLoS One 8, e60820 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Murphy, S.C. et al. Real-time quantitative reverse transcription PCR for monitoring of blood-stage Plasmodium falciparum infections in malaria human challenge trials. Am. J. Trop. Med. Hyg. 86, 383–394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  61. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

  62. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph 14, 33–38, 27–28 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Phillips, J.C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang, J. & MacKerell, A.D. Jr. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput. Chem. 34, 2135–2145 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Páll, S. et al. Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In Solving Software Challenges for Exascale (eds. Markadis, S. & Laure, E.) 3–27 (Springer, Cham, 2015).

  67. McGibbon, R.T. et al. MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528–1532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  69. Hunter, J.D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  70. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Guerois, R., Nielsen, J.E. & Serrano, L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 320, 369–387 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the study volunteers from the malaria clinical trials VRC312 and VRC314. We thank R. Bailer (Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health), for providing peripheral blood mononuclear cell samples. We thank R. Lynch, S. Narpala, M. Prabhakaran, R. Nguyen and X. Chen (Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health) for technical help and advice regarding the experiments. We thank I. Cockburn (Australian National University College of Health and Medicine) for providing some of the biotinylated (NANP)9 probe used here. We thank T. Zhou (Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health) for providing monoclonal antibody VRC01. We thank C. Peckels, A. Foulger, A. Holland and M. Wang (Duke Human Vaccine Institute (DHVI)) for technical assistance and H. Bouton-Verville (DHVI) for project management. We are grateful to C. A. Schramm's expertise and assistance in analyzing the malaria Pf3K database. We thank the Sanaria Manufacturing Team for the production of fresh PfSPZ. We thank M. Nason for technical help with statistical analysis. We thank B. Graham (Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health) for insightful discussion regarding the project. We are particularly grateful to L. Stamatatos for use of laboratory space and equipment. We thank the J. B. Pendleton Charitable Trust for its generous support of Formulatrix robotic instruments. This work was supported by the National Institutes of Health grant GM56550 and the National Science Foundation grant MCB-1157506 to E.F. M.P. and C.W. were supported by a Vaccine and Infectious Disease Division Faculty Initiative Grant through the Fred Hutchinson Cancer Research Center. X-ray diffraction data was collected at the Berkeley Center for Structural Biology beamlines 5.0.1 and 5.0.2, which are supported in part by the National Institute of General Medical Sciences, National Institutes of Health. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract number DE-AC02-05CH11231. Work done at Duke Universiy has been funded in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. Production and characterization of the PfSPZ Vaccine were supported in part by the National Institute of Allergy and Infectious Diseases Small Business Innovation Research Grants 5R44AI058375-08 (to S.L.H.).

The findings and conclusions in this report are those of the authors and do not necessarily reflect the views of the funding agency or collaborators. The views expressed in this publication are those of the authors and do not necessarily reflect the official policy or position of the Department of Health and Human Services or the United States Government.

Author information

Authors and Affiliations

Authors

Contributions

N.K.K., A.H.I., B.K.S., M.P., F.Z. and R.A.S. planned the studies. N.K.K., A.H.I., B.K.S., S. Murphy, C.W., Y.F.-G., B.J.F., A.S., J.R.F., S. March, A.B.M., M.K., A.K.W., S.K.F., G.-Y.C., S.C., N.K., B.Z., J.G., P.S. and M.P. conducted experiments. F.Z. provided mouse monoclonal antibodies 2A10 and 5D5. K.W., K.O.S., A.M.T., M.A.G. and A.M. contributed new methodologies, analytic tools and performed research. M.B., H.-X.L. and B.F.H. isolated, cloned and produced plasmablast antibodies and analyzed data. N.K.K., A.H.I., B.K.S., F.Z., S.H.I.K., S.C., A.S., E.F., S. March, A.B.M., P.D.K., P.S., S.N.B., B.K.L.S., S.L.H., M.P. and R.A.S. interpreted results from the studies. N.K.K., A.H.I., M.P. and R.A.S. wrote the paper. All authors reviewed, edited and approved the paper.

Corresponding authors

Correspondence to Marie Pancera or Robert A Seder.

Ethics declarations

Competing interests

N.K., S.C., B.K.L.S. and S.L.H. are salaried employees of Sanaria Inc., the developer and owner of the PfSPZ Vaccine and the sponsor of the clinical trials. In addition, S.L.H. and B.K.L.S. have a financial interest in Sanaria Inc. All other authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kisalu, N., Idris, A., Weidle, C. et al. A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite. Nat Med 24, 408–416 (2018). https://doi.org/10.1038/nm.4512

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4512

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing