Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective modulation of the androgen receptor AF2 domain rescues degeneration in spinal bulbar muscular atrophy

An Author Correction to this article was published on 08 January 2024

This article has been updated

Abstract

Spinal bulbar muscular atrophy (SBMA) is a motor neuron disease caused by toxic gain of function of the androgen receptor (AR). Previously, we found that co-regulator binding through the activation function-2 (AF2) domain of AR is essential for pathogenesis, suggesting that AF2 may be a potential drug target for selective modulation of toxic AR activity. We screened previously identified AF2 modulators for their ability to rescue toxicity in a Drosophila model of SBMA. We identified two compounds, tolfenamic acid (TA) and 1-[2-(4-methylphenoxy)ethyl]-2-[(2-phenoxyethyl)sulfanyl]-1H-benzimidazole (MEPB), as top candidates for rescuing lethality, locomotor function and neuromuscular junction defects in SBMA flies. Pharmacokinetic analyses in mice revealed a more favorable bioavailability and tissue retention of MEPB compared with TA in muscle, brain and spinal cord. In a preclinical trial in a new mouse model of SBMA, MEPB treatment yielded a dose-dependent rescue from loss of body weight, rotarod activity and grip strength. In addition, MEPB ameliorated neuronal loss, neurogenic atrophy and testicular atrophy, validating AF2 modulation as a potent androgen-sparing strategy for SBMA therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AF2 modulation rescues degeneration in a fruit fly model of SBMA.
Figure 2: AR121Q-expressing mice recapitulate SBMA symptoms and pathology.
Figure 3: MEPB improves phenotypic outcomes and pathologic degeneration in a pilot preclinical trial in SBMA mice.
Figure 4: MEPB improves phenotypic outcomes and improves quality of life parameters in a preclinical trial in SBMA mice.
Figure 5: MEPB reduces degeneration in spinal cord and skeletal muscle of SBMA mice.
Figure 6: AF2 modulation does not inhibit AR functional activity.

Similar content being viewed by others

Change history

References

  1. Kennedy, W.R., Alter, M. & Sung, J.H. Progressive proximal spinal and bulbar muscular atrophy of late onset. A sex-linked recessive trait. Neurology 18, 671–680 (1968).

    Article  CAS  PubMed  Google Scholar 

  2. Chahin, N., Klein, C., Mandrekar, J. & Sorenson, E. Natural history of spinal-bulbar muscular atrophy. Neurology 70, 1967–1971 (2008).

    Article  PubMed  Google Scholar 

  3. Poletti, A., Negri-Cesi, P. & Martini, L. Reflections on the diseases linked to mutations of the androgen receptor. Endocrine 28, 243–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Fratta, P. et al. Correlation of clinical and molecular features in spinal bulbar muscular atrophy. Neurology 82, 2077–2084 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Sorarù, G. et al. Spinal and bulbar muscular atrophy: skeletal muscle pathology in male patients and heterozygous females. J. Neurol. Sci. 264, 100–105 (2008).

    Article  PubMed  Google Scholar 

  7. Finsterer, J. Perspectives of Kennedy's disease. J. Neurol. Sci. 298, 1–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Nedelsky, N.B. et al. Native functions of the androgen receptor are essential to pathogenesis in a Drosophila model of spinobulbar muscular atrophy. Neuron 67, 936–952 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith, C.L. & O'Malley, B.W. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr. Rev. 25, 45–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Askew, E.B., Gampe, R.T. Jr., Stanley, T.B., Faggart, J.L. & Wilson, E.M. Modulation of androgen receptor activation function 2 2 by testosterone and dihydrotestosterone. J. Biol. Chem. 282, 25801–25816 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Chevalier-Larsen, E.S. et al. Castration restores function and neurofilament alterations of aged symptomatic males in a transgenic mouse model of spinal and bulbar muscular atrophy. J. Neurosci. 24, 4778–4786 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Katsuno, M. et al. Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Neuron 35, 843–854 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Katsuno, M. et al. Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy. Nat. Med. 9, 768–773 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Katsuno, M. et al. Efficacy and safety of leuprorelin in patients with spinal and bulbar muscular atrophy (JASMITT study): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 9, 875–884 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Yang, Z. et al. ASC-J9 ameliorates spinal and bulbar muscular atrophy phenotype via degradation of androgen receptor. Nat. Med. 13, 348–353 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Banno, H. et al. Phase 2 trial of leuprorelin in patients with spinal and bulbar muscular atrophy. Ann. Neurol. 65, 140–150 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Axerio-Cilies, P. et al. Inhibitors of androgen receptor activation function-2 (AF2) site identified through virtual screening. J. Med. Chem. 54, 6197–6205 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Ban, F. et al. Discovery of 1H-indole-2-carboxamides as novel inhibitors of the androgen receptor binding function 3 3 (BF3). J. Med. Chem. 57, 6867–6872 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Estébanez-Perpiñá, E. et al. A surface on the androgen receptor that allosterically regulates coactivator binding. Proc. Natl. Acad. Sci. USA 104, 16074–16079 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Munuganti, R.S. et al. Targeting the binding function 3 3 (BF3) site of the androgen receptor through virtual screening. 2. development of 2-((2-phenoxyethyl) thio)-1H-benzimidazole derivatives. J. Med. Chem. 56, 1136–1148 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Lack, N.A. et al. Targeting the binding function 3 3 (BF3) site of the human androgen receptor through virtual screening. J. Med. Chem. 54, 8563–8573 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Munuganti, R.S. et al. Identification of a potent antiandrogen that targets the BF3 site of the androgen receptor and inhibits enzalutamide-resistant prostate cancer. Chem. Biol. 21, 1476–1485 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Rocchi, A. et al. Glycolytic-to-oxidative fiber-type switch and mTOR signaling activation are early-onset features of SBMA muscle modified by high-fat diet. Acta Neuropathol. 132, 127–144 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cashman, N.R., Covault, J., Wollman, R.L. & Sanes, J.R. Neural cell adhesion molecule in normal, denervated, and myopathic human muscle. Ann. Neurol. 21, 481–489 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Gosztonyi, G., Naschold, U., Grozdanovic, Z., Stoltenburg-Didinger, G. & Gossrau, R. Expression of Leu-19 (CD56, N-CAM) and nitric oxide synthase (NOS) I in denervated and reinnervated human skeletal muscle. Microsc. Res. Tech. 55, 187–197 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Marbini, A. et al. Immunohistochemical study of muscle biopsy in children with cerebral palsy. Brain Dev. 24, 63–66 (2002).

    Article  PubMed  Google Scholar 

  27. Yu, Z. et al. Abnormalities of germ cell maturation and sertoli cell cytoskeleton in androgen receptor 113 CAG knock-in mice reveal toxic effects of the mutant protein. Am. J. Pathol. 168, 195–204 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun, J.H. & Lee, S.A. Association between CAG repeat polymorphisms and the risk of prostate cancer: a meta-analysis by race, study design and the number of (CAG)n repeat polymorphisms. Int. J. Mol. Med. 32, 1195–1203 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Albertelli, M.A. et al. Glutamine tract length of human androgen receptors affects hormone-dependent and -independent prostate cancer in mice. Hum. Mol. Genet. 17, 98–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Robins, D.M., Albertelli, M.A. & O'Mahony, O.A. Androgen receptor variants and prostate cancer in humanized AR mice. J. Steroid Biochem. Mol. Biol. 108, 230–236 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Buchanan, G. et al. Structural and functional consequences of glutamine tract variation in the androgen receptor. Hum. Mol. Genet. 13, 1677–1692 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Buchanan, G. et al. Corepressor effect on androgen receptor activity varies with the length of the CAG encoded polyglutamine repeat and is dependent on receptor/corepressor ratio in prostate cancer cells. Mol. Cell. Endocrinol. 342, 20–31 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jehle, K. et al. Coregulator control of androgen receptor action by a novel nuclear receptor-binding motif. J. Biol. Chem. 289, 8839–8851 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Corell, T. Pharmacology of tolfenamic acid. Pharmacol. Toxicol. 75 (Suppl. 2), 14–21 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Hendel, J. The overall safety of tolfenamic acid. Pharmacol. Toxicol. 75 (Suppl. 2), 53–55 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Hendel, L., Larsen, E. & Bonnevie, O. A comparative study of the influence of tolfenamic acid (Clotam) and diclofenac sodium (Voltaren) on the gastrointestinal mucosa in patients with a history of NSAID-related dyspeptic symptoms. Pharmacol. Toxicol. 75 (Suppl. 2), 49–50 (1994).

    Article  PubMed  Google Scholar 

  37. Pedersen, S.B. Biopharmaceutical aspects of tolfenamic acid. Pharmacol. Toxicol. 75 (Suppl. 2), 22–32 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Yuan, H. et al. Suppression of the androgen receptor function by quercetin through protein-protein interactions of Sp1, c-Jun, and the androgen receptor in human prostate cancer cells. Mol. Cell. Biochem. 339, 253–262 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Hodgson, M.C., Shen, H.C., Hollenberg, A.N. & Balk, S.P. Structural basis for nuclear receptor corepressor recruitment by antagonist-liganded androgen receptor. Mol. Cancer Ther. 7, 3187–3194 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bott, L.C. et al. A small-molecule Nrf1 and Nrf2 activator mitigates polyglutamine toxicity in spinal and bulbar muscular atrophy. Hum. Mol. Genet. 25, 1979–1989 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Glynn, M.W. & Glover, T.W. Incomplete processing of mutant lamin A in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Hum. Mol. Genet. 14, 2959–2969 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. D'Argenio, D.Z., Schumitzky, A. & Wang, X. ADAPT 5 User's Guide: Pharmacokinetic/Pharmacodynamic Systems Analysis Software (Los Angeles: Biomedical Simulations Resource, 2009).

  44. Beal, S.L. Ways to fit a PK model with some data below the quantification limit. J. Pharmacokinet. Pharmacodyn. 28, 481–504 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Brown, R.P., Delp, M.D., Lindstedt, S.L., Rhomberg, L.R. & Beliles, R.P. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health 13, 407–484 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Gargas, M.L. et al. Physiologically based pharmacokinetic modeling of chloroethane disposition in mice, rats, and women. Toxicol. Sci. 104, 54–66 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Kaliss, N. & Pressman, D. Plasma and blood volumes of mouse organs, as determined with radioactive iodoproteins. Proc. Soc. Exp. Biol. Med. 75, 16–20 (1950).

    Article  CAS  PubMed  Google Scholar 

  48. McIlwain, D.L., Hoke, V.B., Kopchick, J.J., Fuller, C.R. & Lund, P.K. Differential inhibition of postnatal brain, spinal cord and body growth by a growth hormone antagonist. BMC Neurosci. 5, 6 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Duhamel, G., Callot, V., Cozzone, P.J. & Kober, F. Spinal cord blood flow measurement by arterial spin labeling. Magn. Reson. Med. 59, 846–854 (2008).

    Article  PubMed  Google Scholar 

  50. Gibaldi, M. & Perrier, D. Pharmacokinetics 2nd edn (CRC Press, 1982).

  51. Denney, W., Duvvuri, S. & Buckeridge, C. Simple, automatic noncompartmental analysis: the PKNCA R package. J. Pharmacokinet. Pharmacodyn. 42, S65 (2015).

    Google Scholar 

  52. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

  53. Brooks, B.P. et al. Characterization of an expanded glutamine repeat androgen receptor in a neuronal cell culture system. Neurobiol. Dis. 3, 313–323 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Nedelsky for editorial assistance. We thank the transgenic core facility at St. Jude for production of AR121Q transgenic mice and ARC Technical Services at St. Jude for surgical and animal care assistance. We also thank W. Denney for guidance in use of the 'PKNCA' R package. This work was supported by the Howard Hughes Medical Institute (J.P.T.), the American-Lebanese-Syrian Associated Charities (J.P.T., H.T.), NIH R01 NS053825 (J.P.T.), NIH R01 NS100023 (A.R.L.), the Muscular Dystrophy Association (A.R.L.) and the Kennedy's Disease Association (H.C.M.).

Author information

Authors and Affiliations

Authors

Contributions

N.M.B., A.K., H.J.K., A.R.L. and J.P.T. designed the fruit fly, mouse and cell-based experiments. N.M.B., A.K. and H.C.M. performed the experiments and data analyses. P.K.V., Y.W. and B.B.F. performed the pharmacokinetics analyses. R.B.S., E.R.Q. and N.C.K. provided assistance in the fruit fly experiments. J.D., J. Messing, B.D.F. and P.-C.C. provided assistance in the mouse experiments. B.J.W. performed in silico docking of TA into the AR LBD and generated the structural depictions of the AR LBD. B.L.S. and A.P.K. performed the cloning and preparation of the constructs used to generate AR121Q transgenic mice. J. Moore and B.F. provided assistance in cell-based experiments for digital PCR. J. Moore provided assistance in mouse tissue and plasma collection for pharmacokinetics analysis. H.T. performed histopathologic analysis of AR121Q transgenic mice. Y.L. performed the sample size estimation (power analysis) and statistical QOL analysis. N.M.B., A.K., H.J.K. and J.P.T. wrote the manuscript. All of the authors provided scientific input and read and approved the manuscript.

Corresponding author

Correspondence to J Paul Taylor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures & Table

Supplementary Figures 1-7 & Supplementary Table 1 (PDF 3158 kb)

Life Sciences Reporting Summary (PDF 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badders, N., Korff, A., Miranda, H. et al. Selective modulation of the androgen receptor AF2 domain rescues degeneration in spinal bulbar muscular atrophy. Nat Med 24, 427–437 (2018). https://doi.org/10.1038/nm.4500

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4500

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research