Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

DKK2 imparts tumor immunity evasion through β-catenin-independent suppression of cytotoxic immune-cell activation


Immunotherapy offers new options for cancer treatment, but efficacy varies across cancer types. Colorectal cancers (CRCs) are largely refractory to immune-checkpoint blockade, which suggests the presence of yet uncharacterized immune-suppressive mechanisms. Here we report that the loss of adenomatosis polyposis coli (APC) in intestinal tumor cells or of the tumor suppressor PTEN in melanoma cells upregulates the expression of Dickkopf-related protein 2 (DKK2), which, together with its receptor LRP5, provides an unconventional mechanism for tumor immune evasion. DKK2 secreted by tumor cells acts on cytotoxic lymphocytes, inhibiting STAT5 signaling by impeding STAT5 nuclear localization via LRP5, but independently of LRP6 and the Wnt–β-catenin pathway. Genetic or antibody-mediated ablation of DKK2 activates natural killer (NK) cells and CD8+ T cells in tumors, impedes tumor progression, and enhances the effects of PD-1 blockade. Thus, we have identified a previously unknown tumor immune-suppressive mechanism and immunotherapeutic targets particularly relevant for CRCs and a subset of melanomas.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: DKK2 blockade reduces tumor burdens in ApcMin/+ mice.
Figure 2: DKK2 blockade impedes tumor progression in the MC38 syngeneic tumor model.
Figure 3: DKK2 blockade enhances cytotoxic immune cell activation.
Figure 4: DKK2 directly suppresses NK cell activation.
Figure 5: DKK2 impedes pSTAT5 nuclear localization.
Figure 6: LRP5 is required for DKK2-mediated inhibition of NK cell activation.

Accession codes

Primary accessions

Gene Expression Omnibus


  1. 1

    Chen, D.S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article  CAS  Google Scholar 

  2. 2

    Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Postow, M.A., Callahan, M.K. & Wolchok, J.D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33, 1974–1982 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Coussens, L.M., Zitvogel, L. & Palucka, A.K. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339, 286–291 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Topalian, S.L., Drake, C.G. & Pardoll, D.M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450–461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Palucka, A.K. & Coussens, L.M. The basis of oncoimmunology. Cell 164, 1233–1247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Topalian, S.L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Brahmer, J.R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Chung, K.Y. et al. Phase II study of the anti-cytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer. J. Clin. Oncol. 28, 3485–3490 (2010).

    Article  CAS  Google Scholar 

  10. 10

    Sharma, P., Hu-Lieskovan, S., Wargo, J.A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Waldmann, T.A. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 6, 595–601 (2006).

    Article  CAS  Google Scholar 

  12. 12

    Mishra, A., Sullivan, L. & Caligiuri, M.A. Molecular pathways: interleukin-15 signaling in health and in cancer. Clin. Cancer Res. 20, 2044–2050 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Klose, C.S. et al. The transcription factor T-bet is induced by IL-15 and thymic agonist selection and controls CD8αα(+) intraepithelial lymphocyte development. Immunity 41, 230–243 (2014).

    Article  CAS  Google Scholar 

  14. 14

    Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11, 445–456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Jakobisiak, M., Golab, J. & Lasek, W. Interleukin 15 as a promising candidate for tumor immunotherapy. Cytokine Growth Factor Rev. 22, 99–108 (2011).

    Article  CAS  Google Scholar 

  16. 16

    Zarogoulidis, P. et al. Interleukin-7 and interleukin-15 for cancer. J. Cancer 5, 765–773 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Hukelmann, J.L. et al. The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat. Immunol. 17, 104–112 (2016).

    Article  CAS  Google Scholar 

  18. 18

    Nandagopal, N., Ali, A.K., Komal, A.K. & Lee, S.H. The critical role of IL-15-PI3K-mTOR pathway in natural killer cell effector functions. Front. Immunol. 5, 187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Logan, C.Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    Article  CAS  Google Scholar 

  20. 20

    Moon, R.T., Kohn, A.D., De Ferrari, G.V. & Kaykas, A. WNT and beta-catenin signalling: diseases and therapies. Nat. Rev. Genet. 5, 691–701 (2004).

    Article  CAS  Google Scholar 

  21. 21

    MacDonald, B.T., Tamai, K. & He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Clevers, H. & Nusse, R. Wnt/β-catenin signaling and disease. Cell 149, 1192–1205 (2012).

    Article  CAS  Google Scholar 

  23. 23

    Niehrs, C. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol. 13, 767–779 (2012).

    Article  CAS  Google Scholar 

  24. 24

    Polakis, P. Wnt signaling in cancer. Cold Spring Harb. Perspect. Biol. 4, a008052 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Niehrs, C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25, 7469–7481 (2006).

    Article  CAS  Google Scholar 

  26. 26

    Bao, J., Zheng, J.J. & Wu, D. The structural basis of DKK-mediated inhibition of Wnt/LRP signaling. Sci. Signal. 5, pe22 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Gage, P.J., Qian, M., Wu, D. & Rosenberg, K.I. The canonical Wnt signaling antagonist DKK2 is an essential effector of PITX2 function during normal eye development. Dev. Biol. 317, 310–324 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Li, X. et al. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat. Genet. 37, 945–952 (2005).

    Article  CAS  Google Scholar 

  29. 29

    Mukhopadhyay, M. et al. Dkk2 plays an essential role in the corneal fate of the ocular surface epithelium. Development 133, 2149–2154 (2006).

    Article  CAS  Google Scholar 

  30. 30

    Li, X. et al. Chemical and genetic evidence for the involvement of Wnt antagonist Dickkopf2 in regulation of glucose metabolism. Proc. Natl. Acad. Sci. USA 109, 11402–11407 (2012).

    Article  Google Scholar 

  31. 31

    Wu, W., Glinka, A., Delius, H. & Niehrs, C. Mutual antagonism between dickkopf1 and dickkopf2 regulates Wnt/beta-catenin signalling. Curr. Biol. 10, 1611–1614 (2000).

    Article  CAS  Google Scholar 

  32. 32

    Li, L., Mao, J., Sun, L., Liu, W. & Wu, D. Second cysteine-rich domain of Dickkopf-2 activates canonical Wnt signaling pathway via LRP-6 independently of dishevelled. J. Biol. Chem. 277, 5977–5981 (2002).

    Article  CAS  Google Scholar 

  33. 33

    Caneparo, L. et al. Dickkopf-1 regulates gastrulation movements by coordinated modulation of Wnt/beta catenin and Wnt/PCP activities, through interaction with the Dally-like homolog Knypek. Genes Dev. 21, 465–480 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Gaedcke, J. et al. Mutated KRAS results in overexpression of DUSP4, a MAP-kinase phosphatase, and SMYD3, a histone methyltransferase, in rectal carcinomas. Genes Chromosom. Cancer 49, 1024–1034 (2010).

    Article  CAS  Google Scholar 

  35. 35

    Matsui, A. et al. DICKKOPF-4 and -2 genes are upregulated in human colorectal cancer. Cancer Sci. 100, 1923–1930 (2009).

    Article  CAS  Google Scholar 

  36. 36

    Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  37. 37

    Su, L.K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256, 668–670 (1992).

    Article  CAS  Google Scholar 

  38. 38

    Afonina, I.S., Cullen, S.P. & Martin, S.J. Cytotoxic and non-cytotoxic roles of the CTL/NK protease granzyme B. Immunol. Rev. 235, 105–116 (2010).

    Article  CAS  Google Scholar 

  39. 39

    D'Amico, L. et al. Dickkopf-related protein 1 (Dkk1) regulates the accumulation and function of myeloid derived suppressor cells in cancer. J. Exp. Med. 213, 827–840 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Malladi, S. et al. Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 165, 45–60 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Haan, C. et al. Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors. Chem. Biol. 18, 314–323 (2011).

    Article  CAS  Google Scholar 

  42. 42

    Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Peng, W. et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6, 202–216 (2016).

    Article  CAS  Google Scholar 

  44. 44

    Kaur, A. et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532, 250–254 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Semënov, M.V., Zhang, X. & He, X. DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J. Biol. Chem. 283, 21427–21432 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Kim, I. et al. Clathrin and AP2 are required for PtdIns(4,5)P2-mediated formation of LRP6 signalosomes. J. Cell Biol. 200, 419–428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Gotthardt, D. et al. STAT5 is a key regulator in NK cells and acts as a molecular switch from tumor surveillance to tumor promotion. Cancer Discov. 6, 414–429 (2016).

    Article  CAS  Google Scholar 

  48. 48

    Imada, K. et al. Stat5b is essential for natural killer cell-mediated proliferation and cytolytic activity. J. Exp. Med. 188, 2067–2074 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Teglund, S. et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93, 841–850 (1998).

    Article  CAS  Google Scholar 

  50. 50

    Eckelhart, E. et al. A novel Ncr1-Cre mouse reveals the essential role of STAT5 for NK-cell survival and development. Blood 117, 1565–1573 (2011).

    Article  CAS  Google Scholar 

  51. 51

    Wu, B., Crampton, S.P. & Hughes, C.C. Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity 26, 227–239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Marcus, A. et al. Recognition of tumors by the innate immune system and natural killer cells. Adv. Immunol. 122, 91–128 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Crouse, J., Xu, H.C., Lang, P.A. & Oxenius, A. NK cells regulating T cell responses: mechanisms and outcome. Trends Immunol. 36, 49–58 (2015).

    Article  CAS  Google Scholar 

  54. 54

    Cui, Y. et al. Lrp5 functions in bone to regulate bone mass. Nat. Med. 17, 684–691 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Hirano, F. et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 65, 1089–1096 (2005).

    CAS  PubMed  Google Scholar 

  56. 56

    Belov, L., Zhou, J. & Christopherson, R.I. Cell surface markers in colorectal cancer prognosis. Int. J. Mol. Sci. 12, 78–113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Sansom, O.J. et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev. 18, 1385–1390 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Sarraf, P. et al. Differentiation and reversal of malignant changes in colon cancer through PPARγ. Nat. Med. 4, 1046–1052 (1998).

    Article  CAS  Google Scholar 

  59. 59

    Vermeulen, L. & Snippert, H.J. Stem cell dynamics in homeostasis and cancer of the intestine. Nat. Rev. Cancer 14, 468–480 (2014).

    Article  CAS  Google Scholar 

  60. 60

    Wang, K. et al. Characterization of the Kremen-binding site on Dkk1 and elucidation of the role of Kremen in Dkk-mediated Wnt antagonism. J. Biol. Chem. 283, 23371–23375 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Little, M.C., Bell, L.V., Cliffe, L.J. & Else, K.J. The characterization of intraepithelial lymphocytes, lamina propria leukocytes, and isolated lymphoid follicles in the large intestine of mice infected with the intestinal nematode parasite Trichuris muris. J. Immunol. 175, 6713–6722 (2005).

    Article  CAS  Google Scholar 

  62. 62

    Li, Z. et al. Small intestinal intraepithelial lymphocytes expressing CD8 and T cell receptor γδ are involved in bacterial clearance during Salmonella enterica serovar Typhimurium infection. Infect. Immun. 80, 565–574 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Ran, F.A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank M. Orsulak for technical assistance and B. Williams (Van Andel Institute, Grand Rapids, Michigan, USA) for providing the LRP5/6 floxed mice. This work was supported by the NIH (grants GM112182 and CA214703 to D.W.), the Connecticut Bioscience Innovation Fund (to D.W.), NSFC (grant 31530094 to L.L.), the strategic priority research program of CAS (grant XDB19000000 to L.L.), and the CAS/SAFEA International Partnership Program for Creative Research Teams (to L.L. and D.W.).

Author information




D.W., L.L., Q.X., J.W., W.-J.W., W.T., M.S., and J.C. designed the experiments; Q.X., J.W., W.-J.W., S.C., Y.Z., M.S., W.T., and K.M. performed the experiments; D.W., L.L., Q.X., W.-J.W., M.S., J.W., A.L.M.B., L.C., and W.T. analyzed the data; X.Y. performed statistic and bioinformatic analyses; M.B., V.S., and L.S. created and provided important reagents; D.W., L.L., Q.X., J.W., W.-J.W., and W.T. wrote the manuscript; and all authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Lin Li or Wenwen Tang or Dianqing Wu.

Ethics declarations

Competing interests

D.W. received research support from Just Biotherapeutic Asia, which licensed the intellectual property from Yale University on the basis of the findings reported in this article.

Supplementary information

Supplementary Figures & Tables

Supplementary Figures 1–14 & Supplementary Tables 1–2 (PDF 2966 kb)

Life Sciences Reporting Summary (PDF 258 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, Q., Wu, J., Wang, WJ. et al. DKK2 imparts tumor immunity evasion through β-catenin-independent suppression of cytotoxic immune-cell activation. Nat Med 24, 262–270 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing