Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization

Abstract

Memories become less precise and generalized over time as memory traces reorganize in hippocampal–cortical networks. Increased time-dependent loss of memory precision is characterized by an overgeneralization of fear in individuals with post-traumatic stress disorder (PTSD) or age-related cognitive impairments. In the hippocampal dentate gyrus (DG), memories are thought to be encoded by so-called 'engram-bearing' dentate granule cells (eDGCs). Here we show, using rodents, that contextual fear conditioning increases connectivity between eDGCs and inhibitory interneurons (INs) in the downstream hippocampal CA3 region. We identify actin-binding LIM protein 3 (ABLIM3) as a mossy-fiber-terminal-localized cytoskeletal factor whose levels decrease after learning. Downregulation of ABLIM3 expression in DGCs was sufficient to increase connectivity with CA3 stratum lucidum INs (SLINs), promote parvalbumin (PV)-expressing SLIN activation, enhance feedforward inhibition onto CA3 and maintain a fear memory engram in the DG over time. Furthermore, downregulation of ABLIM3 expression in DGCs conferred conditioned context-specific reactivation of memory traces in hippocampal–cortical and amygdalar networks and decreased fear memory generalization at remote (i.e., distal) time points. Consistent with the observation of age-related hyperactivity of CA3, learning failed to increase DGC–SLIN connectivity in 17-month-old mice, whereas downregulation of ABLIM3 expression was sufficient to restore DGC–SLIN connectivity, increase PV+ SLIN activation and improve the precision of remote memories. These studies exemplify a connectivity-based strategy that targets a molecular brake of feedforward inhibition in DG–CA3 and may be harnessed to decrease time-dependent memory generalization in individuals with PTSD and improve memory precision in aging individuals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: ABLIM3 is a learning-regulated molecular brake of DGC–SLIN connectivity.
Figure 2: ABLIM3 downregulation in DGCs increases mEPSCs in PV+ SLINs and PV+ puncta in CA3.
Figure 3: ABLIM3 downregulation in DGCs enhances feedforward inhibition onto CA3.
Figure 4: Enhancing DGC recruitment of inhibition promotes engram maintenance and governs reactivation of remote memory traces in hippocampal–cortical and BLA networks.
Figure 5: ABLIM3 downregulation in DGCs decreases generalization of remote fear memories.
Figure 6: ABLIM3 downregulation in the DG of aged mice enhances DGC–PV+ SLIN connectivity and improves remote memory precision.

References

  1. 1

    Jasnow, A.M., Lynch, J.F. III., Gilman, T.L. & Riccio, D.C. Perspectives on fear generalization and its implications for emotional disorders. J. Neurosci. Res. 95, 821–835 (2017).

    CAS  PubMed  Article  Google Scholar 

  2. 2

    Biedenkapp, J.C. & Rudy, J. W. Context pre-exposure prevents forgetting of a contextual fear memory: implication for regional changes in brain activation patterns associated with recent and remote memory tests. Learn. Mem. 14, 200–203 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Wiltgen, B.J. & Silva, A.J. Memory for context becomes less specific with time. Learn. Mem. 14, 313–317 (2007).

    PubMed  Article  Google Scholar 

  4. 4

    Poulos, A.M. et al. Conditioning- and time-dependent increases in context fear and generalization. Learn. Mem. 23, 379–385 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    Besnard, A. & Sahay, A. Adult hippocampal neurogenesis, fear generalization and stress. Neuropsychopharmacology 41, 24–44 (2016).

    PubMed  Article  Google Scholar 

  6. 6

    Liberzon, I. & Abelson, J.L. Context processing and the neurobiology of post-traumatic stress disorder. Neuron 92, 14–30 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7

    Jovanovic, T. & Ressler, K.J. How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD. Am. J. Psychiatry 167, 648–662 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Leal, S.L. & Yassa, M.A. Neurocognitive aging and the hippocampus across species. Trends Neurosci. 38, 800–812 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Bakker, A. et al. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74, 467–474 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Xu, W. & Südhof, T.C. A neural circuit for memory specificity and generalization. Science 339, 1290–1295 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Ruediger, S. et al. Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 473, 514–518 (2011).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Kheirbek, M.A., Klemenhagen, K.C., Sahay, A. & Hen, R. Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat. Neurosci. 15, 1613–1620 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Likhtik, E., Stujenske, J.M., Topiwala, M.A., Harris, A.Z. & Gordon, J.A. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat. Neurosci. 17, 106–113 (2014).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Jones, G.L. et al. A genetic link between discriminative fear coding by the lateral amygdala, dopamine and fear generalization. eLife 4, e08969 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Lynch, J.F., Winiecki, P., Gilman, T.L., Adkins, J.M. & Jasnow, A.M. Hippocampal GABAB(1a) receptors constrain generalized contextual fear. Neuropsychopharmacology 42, 914–924 (2017).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    McClelland, J.L., McNaughton, B.L. & O'Reilly, R.C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).

    PubMed  Article  Google Scholar 

  17. 17

    Frankland, P.W. & Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119–130 (2005).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Winocur, G., Moscovitch, M. & Sekeres, M. Memory consolidation or transformation: context manipulation and hippocampal representations of memory. Nat. Neurosci. 10, 555–557 (2007).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Wiltgen, B.J. et al. The hippocampus plays a selective role in the retrieval of detailed contextual memories. Curr. Biol. 20, 1336–1344 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Winocur, G., Moscovitch, M. & Bontempi, B. Memory formation and long-term retention in humans and animals: convergence towards a transformation account of hippocampal–neocortical interactions. Neuropsychologia 48, 2339–2356 (2010).

    PubMed  Article  Google Scholar 

  21. 21

    Teyler, T.J. & Rudy, J.W. The hippocampal indexing theory and episodic memory: updating the index. Hippocampus 17, 1158–1169 (2007).

    PubMed  Article  Google Scholar 

  22. 22

    Hardt, O., Nader, K. & Nadel, L. Decay happens: the role of active forgetting in memory. Trends Cogn. Sci. 17, 111–120 (2013).

    PubMed  Article  Google Scholar 

  23. 23

    Frankland, P.W., Bontempi, B., Talton, L.E., Kaczmarek, L. & Silva, A.J. The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304, 881–883 (2004).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Liu, X. et al. Identification and manipulation of memory engram cells. Cold Spring Harb. Symp. Quant. Biol. 79, 59–65 (2014).

    PubMed  Article  Google Scholar 

  25. 25

    Kitamura, T. et al. Engrams and circuits crucial for systems consolidation of a memory. Science 356, 73–78 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Acsády, L., Kamondi, A., Sík, A., Freund, T. & Buzsáki, G. GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J. Neurosci. 18, 3386–3403 (1998).

    PubMed  Article  Google Scholar 

  27. 27

    Martin, E.A. et al. The intellectual disability gene Kirrel3 regulates target-specific mossy fiber synapse development in the hippocampus. eLife 4, e09395 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Torborg, C.L., Nakashiba, T., Tonegawa, S. & McBain, C.J. Control of CA3 output by feedforward inhibition despite developmental changes in the excitation–inhibition balance. J. Neurosci. 30, 15628–15637 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Mori, M., Abegg, M.H., Gähwiler, B.H. & Gerber, U. A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit. Nature 431, 453–456 (2004).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Porro, F. et al. β-adducin (Add2) KO mice show synaptic plasticity, motor coordination and behavioral deficits accompanied by changes in the expression and phosphorylation levels of the α- and γ-adducin subunits. Genes Brain Behav. 9, 84–96 (2010).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Rabenstein, R.L. et al. Impaired synaptic plasticity and learning in mice lacking β-adducin, an actin-regulating protein. J. Neurosci. 25, 2138–2145 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Buzsáki, G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Gan, J. et al. Phase-locked inhibition, but not excitation, underlies hippocampal ripple oscillations in awake mice in vivo. Neuron 93, 308–314 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Jadhav, S.P., Kemere, C., German, P.W. & Frank, L.M. Awake hippocampal sharp-wave ripples support spatial memory. Science 336, 1454–1458 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Ognjanovski, N. et al. Parvalbumin-expressing interneurons coordinate hippocampal network dynamics required for memory consolidation. Nat. Commun. 8, 15039 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Nakashiba, T., Buhl, D.L., McHugh, T.J. & Tonegawa, S. Hippocampal CA3 output is crucial for ripple-associated reactivation and consolidation of memory. Neuron 62, 781–787 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Çaliskan, G. et al. Identification of parvalbumin interneurons as cellular substrate of fear memory persistence. Cereb. Cortex 26, 2325–2340 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Wilson, I.A., Ikonen, S., Gallagher, M., Eichenbaum, H. & Tanila, H. Age-associated alterations of hippocampal place cells are subregion specific. J. Neurosci. 25, 6877–6886 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Yassa, M.A. et al. Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus 21, 968–979 (2011).

    PubMed  Google Scholar 

  40. 40

    Simkin, D. et al. Aging-related hyperexcitability in CA3 pyramidal neurons is mediated by enhanced A-type K+ channel function and expression. J. Neurosci. 35, 13206–13218 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Thomé, A., Gray, D.T., Erickson, C.A., Lipa, P. & Barnes, C.A. Memory impairment in aged primates is associated with region-specific network dysfunction. Mol. Psychiatry 21, 1257–1262 (2016).

    PubMed  Article  CAS  Google Scholar 

  42. 42

    Villanueva-Castillo, C., Tecuatl, C., Herrera-López, G. & Galván, E.J. Aging-related impairments of hippocampal mossy fibers synapses on CA3 pyramidal cells. Neurobiol. Aging 49, 119–137 (2017).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Geinisman, Y., deToledo-Morrell, L., Morrell, F., Persina, I.S. & Rossi, M. Age-related loss of axospinous synapses formed by two afferent systems in the rat dentate gyrus as revealed by the unbiased stereological dissector technique. Hippocampus 2, 437–444 (1992).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Reijmers, L.G., Perkins, B.L., Matsuo, N. & Mayford, M. Localization of a stable neural correlate of associative memory. Science 317, 1230–1233 (2007).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Scobie, K.N. et al. Krüppel-like factor 9 is necessary for late-phase neuronal maturation in the developing dentate gyrus and during adult hippocampal neurogenesis. J. Neurosci. 29, 9875–9887 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Lundquist, E.A., Herman, R.K., Shaw, J.E. & Bargmann, C.I. UNC-115, a conserved protein with predicted LIM and actin-binding domains, mediates axon guidance in C. elegans. Neuron 21, 385–392 (1998).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Barrientos, T. et al. Two novel members of the ABLIM protein family, ABLIM-2 and -3, associate with STARS and directly bind F-actin. J. Biol. Chem. 282, 8393–8403 (2007).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Matsuda, M., Yamashita, J.K., Tsukita, S. & Furuse, M. ABLIM3 is a novel component of adherens junctions with actin-binding activity. Eur. J. Cell Biol. 89, 807–816 (2010).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Cao, J. et al. miR-129-3p controls cilia assembly by regulating CP110 and actin dynamics. Nat. Cell Biol. 14, 697–706 (2012).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Beier, K.T. et al. Anterograde or retrograde trans-synaptic labeling of CNS neurons with vesicular stomatitis virus vectors. Proc. Natl. Acad. Sci. USA 108, 15414–15419 (2011).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Kamiya, H., Shinozaki, H. & Yamamoto, C. Activation of metabotropic glutamate receptor type 2/3 suppresses transmission at rat hippocampal mossy fiber synapses. J. Physiol. (Lond.) 493, 447–455 (1996).

    CAS  Article  Google Scholar 

  52. 52

    Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Goshen, I. et al. Dynamics of retrieval strategies for remote memories. Cell 147, 678–689 (2011).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Vazdarjanova, A. & McGaugh, J.L. Basolateral amygdala is involved in modulating consolidation of memory for classical fear conditioning. J. Neurosci. 19, 6615–6622 (1999).

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Redondo, R.L. et al. Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 513, 426–430 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56

    Girardeau, G., Inema, I. & Buzsáki, G. Reactivations of emotional memory in the hippocampus–amygdala system during sleep. Nat. Neurosci. 20, 1634–1642 (2017).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Yang, C. & Svitkina, T. Filopodia initiation: focus on the Arp2–3 complex and formins. Cell Adh. Migr. 5, 402–408 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58

    Mejillano, M.R. et al. Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 118, 363–373 (2004).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Wilson, M.A. & McNaughton, B.L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60

    Bartos, M., Alle, H. & Vida, I. Role of microcircuit structure and input integration in hippocampal interneuron recruitment and plasticity. Neuropharmacology 60, 730–739 (2011).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Zhou, Z. et al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth and spine maturation. Neuron 52, 255–269 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Lois, C., Hong, E.J., Pease, S., Brown, E.J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Drokhlyansky, E. et al. The brain parenchyma has a type I interferon response that can limit virus spread. Proc. Natl. Acad. Sci. USA 114, E95–E104 (2017).

    CAS  PubMed  Article  Google Scholar 

  64. 64

    McAvoy, K.M. et al. Modulating neuronal competition dynamics in the dentate gyrus to rejuvenate aging memory circuits. Neuron 91, 1356–1373 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    Ikrar, T. et al. Adult neurogenesis modifies excitability of the dentate gyrus. Front. Neural Circuits 7, 204 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank members of the Sahay lab for comments on the manuscript and the late N.J. Sahay for advice. We are thankful to S. Tonegawa (MIT) for the AAV9-tetO-ChR2 construct, M.E. Greenberg (Harvard Medical School) for the lentiviral pLLX vector, J. Rajagopal (MGH) for the HEK293T cells and S. Ramirez (Boston University) for the AAV9-tetO-ChR2-mCherry virus. L.Z. is supported by US National Institutes of Health (NIH) grant R01MH104450. C.C. is an investigator of the Howard Hughes Medical Institute. A.S. acknowledges support from the NIH Biobehavioral Research Awards for Innovative New Scientists (BRAINS; grant R01MH104175), the NIH–National Institute on Aging (NIA) grant R01AG048908, NIH grant 1R01MH111729, the Ellison Medical Foundation New Scholar in Aging, the Whitehall Foundation, an Inscopix Decode award, a NARSAD Independent Investigator Award, Ellison Family Philanthropic support, the Blue Guitar Fund, a Harvard Neurodiscovery Center–MADRC Center Pilot Grant award, and a Harvard Stem Cell Institute Development grant and HSCI seed grant. C.H. was supported by a 2016 HSCI Harvard Internship Program Award.

Author information

Affiliations

Authors

Contributions

N.G., M.E.S., C.H., M.T.K., P.L. and A.B. performed experiments; X.M. and C.L.C. contributed reagents; M.E.S. and L.S.Z. contributed to slice electrophysiology experiments and interpretation of the data; A.S. and N.G. co-developed the concept, analyzed data and wrote the manuscript; and A.S. conceived the project and supervised all aspects of the project.

Corresponding author

Correspondence to Amar Sahay.

Ethics declarations

Competing interests

A.S. and N.G. are named co-inventors on a patent application (US 2016/0376588 A1, PCT/US 15/20540) relating to this study.

Supplementary information

Supplementary Figures

Supplementary Figures 1–12 (PDF 12200 kb)

Life Sciences Reporting Summary (PDF 172 kb)

Supplementary Table 1

Complete statistical analyses (XLS 210 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, N., Soden, M., Herber, C. et al. Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization. Nat Med 24, 438–449 (2018). https://doi.org/10.1038/nm.4491

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing