Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain

Abstract

Zika virus (ZIKV) is a flavivirus with teratogenic effects on fetal brain, but the spectrum of ZIKV-induced brain injury is unknown, particularly when ultrasound imaging is normal. In a pregnant pigtail macaque (Macaca nemestrina) model of ZIKV infection, we demonstrate that ZIKV-induced injury to fetal brain is substantial, even in the absence of microcephaly, and may be challenging to detect in a clinical setting. A common and subtle injury pattern was identified, including (i) periventricular T2-hyperintense foci and loss of fetal noncortical brain volume, (ii) injury to the ependymal epithelium with underlying gliosis and (iii) loss of late fetal neuronal progenitor cells in the subventricular zone (temporal cortex) and subgranular zone (dentate gyrus, hippocampus) with dysmorphic granule neuron patterning. Attenuation of fetal neurogenic output demonstrates potentially considerable teratogenic effects of congenital ZIKV infection even without microcephaly. Our findings suggest that all children exposed to ZIKV in utero should receive long-term monitoring for neurocognitive deficits, regardless of head size at birth.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Fetal brain MRI imaging and volume analysis.
Figure 2: Neuropathology of the fetal brain demonstrating ZIKV-associated ependymal fusion and periventricular gliosis.
Figure 3: NSC proliferation is reduced in late fetal neurogenic zones.
Figure 4: Attenuated neurogenesis in late fetal neurogenic zones accompanied by granule neuron dysmorphia in the dentate gyrus after maternal ZIKV infection.

Accession codes

Accessions

NCBI Reference Sequence

References

  1. 1

    van den Pol, A.N., Mao, G., Yang, Y., Ornaghi, S. & Davis, J.N. Zika virus targeting in the developing brain. J. Neurosci. 37, 2161–2175 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Moore, C.A. et al. Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians. JAMA Pediatr. 171, 288–295 (2016).

    Article  Google Scholar 

  3. 3

    Maurice, J. The Zika virus public health emergency: 6 months on. Lancet 388, 449–450 (2016).

    Article  Google Scholar 

  4. 4

    França, G.V.A. et al. Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation. Lancet 388, 891–897 (2016).

    Article  Google Scholar 

  5. 5

    Mlakar, J. et al. Zika virus associated with microcephaly. N. Engl. J. Med. 374, 951–958 (2016).

    CAS  Article  Google Scholar 

  6. 6

    Driggers, R.W. et al. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N. Engl. J. Med. 374, 2142–2151 (2016).

    CAS  Article  Google Scholar 

  7. 7

    Moura da Silva, A.A. et al. Early growth and neurologic outcomes of infants with probable congenital Zika virus syndrome. Emerg. Infect. Dis. 22, 1953–1956 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Del Campo, M. et al. The phenotypic spectrum of congenital Zika syndrome. Am. J. Med. Genet. A. 173, 841–857 (2017).

    Article  Google Scholar 

  9. 9

    Richner, J.M. et al. Modified mRNA vaccines protect against Zika virus infection. Cell 168, 1114–1125 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Betancourt, D., de Queiroz, N.M., Xia, T., Ahn, J. & Barber, G.N. Cutting edge: innate immune augmenting vesicular stomatitis virus expressing Zika virus proteins confers protective immunity. J. Immunol. 198, 3023–3028 (2017).

    CAS  Article  Google Scholar 

  11. 11

    Chahal, J.S. et al. An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model. Sci. Rep. 7, 252 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. 12

    Sumathy, K. et al. Protective efficacy of Zika vaccine in AG129 mouse model. Sci. Rep. 7, 46375 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Shan, C. et al. A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat. Med. 23, 763–767 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Yang, Y. et al. A cDNA clone-launched platform for high-yield production of inactivated Zika vaccine. EBioMedicine 17, 145–156 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Sapparapu, G. et al. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature 540, 443–447 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Ireton, R.C. & Gale, M. Jr. RIG-I like receptors in antiviral immunity and therapeutic applications. Viruses 3, 906–919 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Adams Waldorf, K.M. et al. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nat. Med. 22, 1256–1259 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Styer, L.M. et al. Mosquito saliva causes enhancement of West Nile virus infection in mice. J. Virol. 85, 1517–1527 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Conway, M.J. et al. Mosquito saliva serine protease enhances dissemination of dengue virus into the mammalian host. J. Virol. 88, 164–175 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20

    Swanstrom, J.A. et al. Dengue virus envelope dimer epitope monoclonal antibodies isolated from dengue patients are protective against Zika virus. MBio 7, e01123–16 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Dejnirattisai, W. et al. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with Zika virus. Nat. Immunol. 17, 1102–1108 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22

    Paul, L.M. et al. Dengue virus antibodies enhance Zika virus infection. Clin. Transl. Immunology 5, e117 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23

    Lin, M.Y. et al. Zika virus infects intermediate progenitor cells and post-mitotic committed neurons in human fetal brain tissues. Sci. Rep. 7, 14883 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. 24

    Onorati, M. et al. Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia. Cell Rep. 16, 2576–2592 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Smart, I.H., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37–53 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Bakken, T.E. et al. A comprehensive transcriptional map of primate brain development. Nature 535, 367–375 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Miller, J.A. et al. Conserved molecular signatures of neurogenesis in the hippocampal subgranular zone of rodents and primates. Development 140, 4633–4644 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Alvarez-Buylla, A. & Lim, D.A. For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683–686 (2004).

    CAS  Article  Google Scholar 

  29. 29

    Gonçalves, J.T., Schafer, S.T. & Gage, F.H. Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell 167, 897–914 (2016).

    Article  CAS  Google Scholar 

  30. 30

    McGrath, E.L. et al. Differential responses of human fetal brain neural stem cells to Zika virus infection. Stem Cell Rep. 8, 715–727 (2017).

    CAS  Article  Google Scholar 

  31. 31

    Hodge, R.D. et al. Tbr2 expression in Cajal-Retzius cells and intermediate neuronal progenitors is required for morphogenesis of the dentate gyrus. J. Neurosci. 33, 4165–4180 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Hodge, R.D. et al. Tbr2 is essential for hippocampal lineage progression from neural stem cells to intermediate progenitors and neurons. J. Neurosci. 32, 6275–6287 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Spalding, K.L. et al. Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1219–1227 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Mu, Y. & Gage, F.H. Adult hippocampal neurogenesis and its role in Alzheimer's disease. Mol. Neurodegener. 6, 85 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Duan, X. et al. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130, 1146–1158 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Jacobs, B.L., van Praag, H. & Gage, F.H. Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol. Psychiatry 5, 262–269 (2000).

    CAS  Article  Google Scholar 

  37. 37

    Li, H. et al. Zika virus infects neural progenitors in the adult mouse brain and alters proliferation. Cell Stem Cell 19, 593–598 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Rice, D. & Barone, S. Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ. Health Perspect. 108 (Suppl. 3), 511–533 (2000).

    PubMed  PubMed Central  Google Scholar 

  39. 39

    McCracken, M.K. et al. Impact of prior flavivirus immunity on Zika virus infection in rhesus macaques. PLoS Pathog. 13, e1006487 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40

    Katzelnick, L.C. et al. Antibody-dependent enhancement of severe dengue disease in humans. Science 358, 929–932 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Styer, L.M. et al. Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathog. 3, 1262–1270 (2007).

    CAS  Article  Google Scholar 

  42. 42

    Woods, S.E., Marini, R.P. & Patterson, M.M. Noninvasive temporal artery thermometry as an alternative to rectal thermometry in research macaques (Macaca spp.). J. Am. Assoc. Lab. Anim. Sci. 52, 295–300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Price, D.P. et al. The fat body transcriptomes of the yellow fever mosquito Aedes aegypti, pre- and post- blood meal. PLoS One 6, e22573 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Conrad, S. et al. Ultrasound measurement of fetal growth in Macaca nemestrina. Am. J. Primatol. 36, 15–35 (1995).

    Article  Google Scholar 

  45. 45

    Kim, K. et al. Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation. IEEE Trans. Med. Imaging 29, 146–158 (2010).

    Article  Google Scholar 

  46. 46

    Kim, K. et al. Bias field inconsistency correction of motion-scattered multislice MRI for improved 3D image reconstruction. IEEE Trans. Med. Imaging 30, 1704–1712 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Fogtmann, M. et al. A unified approach to diffusion direction sensitive slice registration and 3-D DTI reconstruction from moving fetal brain anatomy. IEEE Trans. Med. Imaging 33, 272–289 (2014).

    Article  Google Scholar 

  48. 48

    Habas, P.A. et al. A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation. Neuroimage 53, 460–470 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Lanciotti, R.S. et al. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 14, 1232–1239 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Zhao, H. et al. Structural basis of Zika virus–specific antibody protection. Cell 166, 1016–1027 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Thomsen, E.R. et al. Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat. Methods 13, 87–93 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge J. Hamanishi for technical assistance with preparation of the figures. We acknowledge V. Alishetti for technical assistance and G. Hess for technical advice related to the flow cytometry studies. We thank M. Diamond (Washington University) for the kind gift of antibodies (ZV-13, Supplementary Table 5). We also thank S. Rodriguez and I. Hansen in the New Mexico State University Biology Department for mosquito rearing. We thank C. Hughes and G. Gallardo for administrative assistance.

This work was primarily supported by generous private philanthropic gifts, mainly from five donors in Florida, who wish to remain anonymous. Further support was obtained from the University of Washington Department of Obstetrics & Gynecology, Seattle Children's Research Institute and the National Institutes of Health (NIH), grant no. R01AI100989 (L.R. and K.M.A.W.), AI083019 (M.G.), AI104002 (M.G.), AI100625 (R.S.B.), AI107731 (R.S.B.), R01NS092339 (R.F.H.), R01NS085081 (R.F.H.), R21OD023838 (B.R.N.), and the Keck Foundation (B.R.N.). The NIH training grants T32 HD007233 (principal investigator: L. Frenkel) and T32 AI07509 (principal investigator: L. Campbell) supported E.B. and J.V., respectively. A Perkins Coie Award for Discovery supported J.A.R. The NIH Office of Research Infrastructure Programs (P51 OD010425) also supported this project. The authors thank the Allen Institute for Brain Science founders, P. Allen and J. Allen, for their vision, encouragement and support.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or other funders. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

K.M.A.W., B.R.N., J.E.S.-B., R.P.K., C.S., R.S.B., D.G.W., M.G. and L.R. designed the study. K.M.A.W., B.R.N., J.E.S.-B., R.P.K., C.S., R.P.K., B.A., S.M., J.T.-G., A.B., M.C., J.A.R., J.V., V.S.-U., E.B., J.A.S., J.L., M.A.D., K.J., D.G.W., J.T.M., K.A.H., J.O., G.M.G., W.L., C.E., W.M.D., C.G., E.C.D., M.R.F., L.K. and L.R. performed the experiments. K.M.A.W., B.R.N., J.E.S.-B., C.S., R.P.K., B.A., C.L.W., S.M., J.T.-G., A.B., M.K.D., D.W.W.S., J.A.R., J.V., J.L., X.G., M.A.D., J.A.S., K.J., R.S.B., R.D.H., R.F.G., W.B.D., R.H., L.R., R.F.H., M.G. and L.R. analyzed the data. K.M.A.W., B.R.N., J.E.S.-B., C.S., R.P.K., B.A., C.L.W., A.B., W.B.D., M.G. and L.R. drafted the manuscript. All authors reviewed the final draft of the manuscript.

Corresponding authors

Correspondence to Kristina M Adams Waldorf or Michael Gale Jr or Lakshmi Rajagopal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Tables & Figures

Supplementary Tables 1–5 & Supplementary Figures 1–19 (PDF 7418 kb)

Life Sciences Reporting Summary (PDF 266 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adams Waldorf, K., Nelson, B., Stencel-Baerenwald, J. et al. Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat Med 24, 368–374 (2018). https://doi.org/10.1038/nm.4485

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing