Zika virus (ZIKV) is a flavivirus with teratogenic effects on fetal brain, but the spectrum of ZIKV-induced brain injury is unknown, particularly when ultrasound imaging is normal. In a pregnant pigtail macaque (Macaca nemestrina) model of ZIKV infection, we demonstrate that ZIKV-induced injury to fetal brain is substantial, even in the absence of microcephaly, and may be challenging to detect in a clinical setting. A common and subtle injury pattern was identified, including (i) periventricular T2-hyperintense foci and loss of fetal noncortical brain volume, (ii) injury to the ependymal epithelium with underlying gliosis and (iii) loss of late fetal neuronal progenitor cells in the subventricular zone (temporal cortex) and subgranular zone (dentate gyrus, hippocampus) with dysmorphic granule neuron patterning. Attenuation of fetal neurogenic output demonstrates potentially considerable teratogenic effects of congenital ZIKV infection even without microcephaly. Our findings suggest that all children exposed to ZIKV in utero should receive long-term monitoring for neurocognitive deficits, regardless of head size at birth.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


NCBI Reference Sequence


  1. 1.

    , , , & Zika virus targeting in the developing brain. J. Neurosci. 37, 2161–2175 (2017).

  2. 2.

    et al. Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians. JAMA Pediatr. 171, 288–295 (2016).

  3. 3.

    The Zika virus public health emergency: 6 months on. Lancet 388, 449–450 (2016).

  4. 4.

    et al. Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation. Lancet 388, 891–897 (2016).

  5. 5.

    et al. Zika virus associated with microcephaly. N. Engl. J. Med. 374, 951–958 (2016).

  6. 6.

    et al. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N. Engl. J. Med. 374, 2142–2151 (2016).

  7. 7.

    et al. Early growth and neurologic outcomes of infants with probable congenital Zika virus syndrome. Emerg. Infect. Dis. 22, 1953–1956 (2016).

  8. 8.

    et al. The phenotypic spectrum of congenital Zika syndrome. Am. J. Med. Genet. A. 173, 841–857 (2017).

  9. 9.

    et al. Modified mRNA vaccines protect against Zika virus infection. Cell 168, 1114–1125 (2017).

  10. 10.

    , , , & Cutting edge: innate immune augmenting vesicular stomatitis virus expressing Zika virus proteins confers protective immunity. J. Immunol. 198, 3023–3028 (2017).

  11. 11.

    et al. An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model. Sci. Rep. 7, 252 (2017).

  12. 12.

    et al. Protective efficacy of Zika vaccine in AG129 mouse model. Sci. Rep. 7, 46375 (2017).

  13. 13.

    et al. A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat. Med. 23, 763–767 (2017).

  14. 14.

    et al. A cDNA clone-launched platform for high-yield production of inactivated Zika vaccine. EBioMedicine 17, 145–156 (2017).

  15. 15.

    et al. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature 540, 443–447 (2016).

  16. 16.

    & RIG-I like receptors in antiviral immunity and therapeutic applications. Viruses 3, 906–919 (2011).

  17. 17.

    et al. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nat. Med. 22, 1256–1259 (2016).

  18. 18.

    et al. Mosquito saliva causes enhancement of West Nile virus infection in mice. J. Virol. 85, 1517–1527 (2011).

  19. 19.

    et al. Mosquito saliva serine protease enhances dissemination of dengue virus into the mammalian host. J. Virol. 88, 164–175 (2014).

  20. 20.

    et al. Dengue virus envelope dimer epitope monoclonal antibodies isolated from dengue patients are protective against Zika virus. MBio 7, e01123–16 (2016).

  21. 21.

    et al. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with Zika virus. Nat. Immunol. 17, 1102–1108 (2016).

  22. 22.

    et al. Dengue virus antibodies enhance Zika virus infection. Clin. Transl. Immunology 5, e117 (2016).

  23. 23.

    et al. Zika virus infects intermediate progenitor cells and post-mitotic committed neurons in human fetal brain tissues. Sci. Rep. 7, 14883 (2017).

  24. 24.

    et al. Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia. Cell Rep. 16, 2576–2592 (2016).

  25. 25.

    , , , & Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37–53 (2002).

  26. 26.

    et al. A comprehensive transcriptional map of primate brain development. Nature 535, 367–375 (2016).

  27. 27.

    et al. Conserved molecular signatures of neurogenesis in the hippocampal subgranular zone of rodents and primates. Development 140, 4633–4644 (2013).

  28. 28.

    & For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683–686 (2004).

  29. 29.

    , & Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell 167, 897–914 (2016).

  30. 30.

    et al. Differential responses of human fetal brain neural stem cells to Zika virus infection. Stem Cell Rep. 8, 715–727 (2017).

  31. 31.

    et al. Tbr2 expression in Cajal-Retzius cells and intermediate neuronal progenitors is required for morphogenesis of the dentate gyrus. J. Neurosci. 33, 4165–4180 (2013).

  32. 32.

    et al. Tbr2 is essential for hippocampal lineage progression from neural stem cells to intermediate progenitors and neurons. J. Neurosci. 32, 6275–6287 (2012).

  33. 33.

    et al. Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1219–1227 (2013).

  34. 34.

    & Adult hippocampal neurogenesis and its role in Alzheimer's disease. Mol. Neurodegener. 6, 85 (2011).

  35. 35.

    et al. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130, 1146–1158 (2007).

  36. 36.

    , & Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol. Psychiatry 5, 262–269 (2000).

  37. 37.

    et al. Zika virus infects neural progenitors in the adult mouse brain and alters proliferation. Cell Stem Cell 19, 593–598 (2016).

  38. 38.

    & Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ. Health Perspect. 108 (Suppl. 3), 511–533 (2000).

  39. 39.

    et al. Impact of prior flavivirus immunity on Zika virus infection in rhesus macaques. PLoS Pathog. 13, e1006487 (2017).

  40. 40.

    et al. Antibody-dependent enhancement of severe dengue disease in humans. Science 358, 929–932 (2017).

  41. 41.

    et al. Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathog. 3, 1262–1270 (2007).

  42. 42.

    , & Noninvasive temporal artery thermometry as an alternative to rectal thermometry in research macaques (Macaca spp.). J. Am. Assoc. Lab. Anim. Sci. 52, 295–300 (2013).

  43. 43.

    et al. The fat body transcriptomes of the yellow fever mosquito Aedes aegypti, pre- and post- blood meal. PLoS One 6, e22573 (2011).

  44. 44.

    et al. Ultrasound measurement of fetal growth in Macaca nemestrina. Am. J. Primatol. 36, 15–35 (1995).

  45. 45.

    et al. Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation. IEEE Trans. Med. Imaging 29, 146–158 (2010).

  46. 46.

    et al. Bias field inconsistency correction of motion-scattered multislice MRI for improved 3D image reconstruction. IEEE Trans. Med. Imaging 30, 1704–1712 (2011).

  47. 47.

    et al. A unified approach to diffusion direction sensitive slice registration and 3-D DTI reconstruction from moving fetal brain anatomy. IEEE Trans. Med. Imaging 33, 272–289 (2014).

  48. 48.

    et al. A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation. Neuroimage 53, 460–470 (2010).

  49. 49.

    et al. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 14, 1232–1239 (2008).

  50. 50.

    et al. Structural basis of Zika virus–specific antibody protection. Cell 166, 1016–1027 (2016).

  51. 51.

    et al. Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat. Methods 13, 87–93 (2016).

Download references


We would like to acknowledge J. Hamanishi for technical assistance with preparation of the figures. We acknowledge V. Alishetti for technical assistance and G. Hess for technical advice related to the flow cytometry studies. We thank M. Diamond (Washington University) for the kind gift of antibodies (ZV-13, Supplementary Table 5). We also thank S. Rodriguez and I. Hansen in the New Mexico State University Biology Department for mosquito rearing. We thank C. Hughes and G. Gallardo for administrative assistance.

This work was primarily supported by generous private philanthropic gifts, mainly from five donors in Florida, who wish to remain anonymous. Further support was obtained from the University of Washington Department of Obstetrics & Gynecology, Seattle Children's Research Institute and the National Institutes of Health (NIH), grant no. R01AI100989 (L.R. and K.M.A.W.), AI083019 (M.G.), AI104002 (M.G.), AI100625 (R.S.B.), AI107731 (R.S.B.), R01NS092339 (R.F.H.), R01NS085081 (R.F.H.), R21OD023838 (B.R.N.), and the Keck Foundation (B.R.N.). The NIH training grants T32 HD007233 (principal investigator: L. Frenkel) and T32 AI07509 (principal investigator: L. Campbell) supported E.B. and J.V., respectively. A Perkins Coie Award for Discovery supported J.A.R. The NIH Office of Research Infrastructure Programs (P51 OD010425) also supported this project. The authors thank the Allen Institute for Brain Science founders, P. Allen and J. Allen, for their vision, encouragement and support.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or other funders. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Author notes

    • Branden R Nelson
    • , Jennifer E Stencel-Baerenwald
    • , Colin Studholme
    • , Raj P Kapur
    • , Blair Armistead
    • , Christie L Walker
    • , Sean Merillat
    • , Jay Vornhagen
    •  & Jennifer Tisoncik-Go

    These authors contributed equally to this work.


  1. Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA.

    • Kristina M Adams Waldorf
    •  & Christie L Walker
  2. Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, USA.

    • Kristina M Adams Waldorf
    • , Jennifer E Stencel-Baerenwald
    • , Jennifer Tisoncik-Go
    • , Justin A Roby
    • , Michael A Davis
    • , Elyse C Dewey
    • , Marian R Fairgrieve
    • , Michael Gale Jr
    •  & Lakshmi Rajagopal
  3. Department of Global Health, University of Washington, Seattle, Washington, USA.

    • Kristina M Adams Waldorf
    • , Blair Armistead
    • , Jay Vornhagen
    • , Michael Gale Jr
    •  & Lakshmi Rajagopal
  4. Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.

    • Kristina M Adams Waldorf
  5. Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA.

    • Branden R Nelson
    • , William B Dobyns
    •  & Robert F Hevner
  6. Department of Immunology, University of Washington, Seattle, Washington, USA.

    • Jennifer E Stencel-Baerenwald
    • , Jennifer Tisoncik-Go
    • , Justin A Roby
    • , Michael A Davis
    • , Elyse C Dewey
    • , Marian R Fairgrieve
    •  & Michael Gale Jr
  7. Department of Pediatrics, University of Washington, Seattle, Washington, USA.

    • Colin Studholme
    • , Michelle Coleman
    • , Erica Boldenow
    • , William B Dobyns
    •  & Lakshmi Rajagopal
  8. Department of Bioengineering, University of Washington, Seattle, Washington, USA.

    • Colin Studholme
    • , Junwei Li
    •  & Xiaohu Gao
  9. Department of Radiology, University of Washington, Seattle, Washington, USA.

    • Colin Studholme
    • , Manjiri K Dighe
    • , Dennis W W Shaw
    • , Jeff Thiel
    •  & Chris Gatenby
  10. Department of Pathology, University of Washington, Seattle, Washington, USA.

    • Raj P Kapur
  11. Department of Pathology, Seattle Children's Hospital, Seattle, Washington, USA.

    • Raj P Kapur
  12. Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA.

    • Blair Armistead
    • , Sean Merillat
    • , Jay Vornhagen
    • , Michelle Coleman
    • , Veronica Santana-Ufret
    • , Erica Boldenow
    •  & Lakshmi Rajagopal
  13. Washington National Primate Research Center, Seattle, Washington, USA.

    • Audrey Baldessari
    • , Jason Ogle
    • , G Michael Gough
    • , Wonsok Lee
    • , Chris English
    • , W McIntyre Durning
    • , Richard F Grant
    •  & LaRene Kuller
  14. Department of Radiology, Seattle Children's Hospital, Seattle, Washington, USA.

    • Dennis W W Shaw
  15. Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

    • Jesica A Swanstrom
    • , Kara Jensen
    • , Douglas G Widman
    •  & Ralph S Baric
  16. Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

    • Ralph S Baric
  17. Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA.

    • Joseph T Medwid
    •  & Kathryn A Hanley
  18. Allen Institute for Brain Science, Seattle, Washington, USA.

    • Rebecca D Hodge


  1. Search for Kristina M Adams Waldorf in:

  2. Search for Branden R Nelson in:

  3. Search for Jennifer E Stencel-Baerenwald in:

  4. Search for Colin Studholme in:

  5. Search for Raj P Kapur in:

  6. Search for Blair Armistead in:

  7. Search for Christie L Walker in:

  8. Search for Sean Merillat in:

  9. Search for Jay Vornhagen in:

  10. Search for Jennifer Tisoncik-Go in:

  11. Search for Audrey Baldessari in:

  12. Search for Michelle Coleman in:

  13. Search for Manjiri K Dighe in:

  14. Search for Dennis W W Shaw in:

  15. Search for Justin A Roby in:

  16. Search for Veronica Santana-Ufret in:

  17. Search for Erica Boldenow in:

  18. Search for Junwei Li in:

  19. Search for Xiaohu Gao in:

  20. Search for Michael A Davis in:

  21. Search for Jesica A Swanstrom in:

  22. Search for Kara Jensen in:

  23. Search for Douglas G Widman in:

  24. Search for Ralph S Baric in:

  25. Search for Joseph T Medwid in:

  26. Search for Kathryn A Hanley in:

  27. Search for Jason Ogle in:

  28. Search for G Michael Gough in:

  29. Search for Wonsok Lee in:

  30. Search for Chris English in:

  31. Search for W McIntyre Durning in:

  32. Search for Jeff Thiel in:

  33. Search for Chris Gatenby in:

  34. Search for Elyse C Dewey in:

  35. Search for Marian R Fairgrieve in:

  36. Search for Rebecca D Hodge in:

  37. Search for Richard F Grant in:

  38. Search for LaRene Kuller in:

  39. Search for William B Dobyns in:

  40. Search for Robert F Hevner in:

  41. Search for Michael Gale in:

  42. Search for Lakshmi Rajagopal in:


K.M.A.W., B.R.N., J.E.S.-B., R.P.K., C.S., R.S.B., D.G.W., M.G. and L.R. designed the study. K.M.A.W., B.R.N., J.E.S.-B., R.P.K., C.S., R.P.K., B.A., S.M., J.T.-G., A.B., M.C., J.A.R., J.V., V.S.-U., E.B., J.A.S., J.L., M.A.D., K.J., D.G.W., J.T.M., K.A.H., J.O., G.M.G., W.L., C.E., W.M.D., C.G., E.C.D., M.R.F., L.K. and L.R. performed the experiments. K.M.A.W., B.R.N., J.E.S.-B., C.S., R.P.K., B.A., C.L.W., S.M., J.T.-G., A.B., M.K.D., D.W.W.S., J.A.R., J.V., J.L., X.G., M.A.D., J.A.S., K.J., R.S.B., R.D.H., R.F.G., W.B.D., R.H., L.R., R.F.H., M.G. and L.R. analyzed the data. K.M.A.W., B.R.N., J.E.S.-B., C.S., R.P.K., B.A., C.L.W., A.B., W.B.D., M.G. and L.R. drafted the manuscript. All authors reviewed the final draft of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Kristina M Adams Waldorf or Michael Gale Jr or Lakshmi Rajagopal.

Supplementary information

PDF files

  1. 1.

    Supplementary Tables & Figures

    Supplementary Tables 1–5 & Supplementary Figures 1–19

  2. 2.

    Life Sciences Reporting Summary

About this article

Publication history