Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells

An Erratum to this article was published on 01 April 2018

This article has been updated

Abstract

Individuals with acute myeloid leukemia (AML) harboring an internal tandem duplication (ITD) in the gene encoding Fms-related tyrosine kinase 3 (FLT3) who relapse after allogeneic hematopoietic cell transplantation (allo-HCT) have a 1-year survival rate below 20%. We observed that sorafenib, a multitargeted tyrosine kinase inhibitor, increased IL-15 production by FLT3-ITD+ leukemia cells. This synergized with the allogeneic CD8+ T cell response, leading to long-term survival in six mouse models of FLT3-ITD+ AML. Sorafenib-related IL-15 production caused an increase in CD8+CD107a+IFN-γ+ T cells with features of longevity (high levels of Bcl-2 and reduced PD-1 levels), which eradicated leukemia in secondary recipients. Mechanistically, sorafenib reduced expression of the transcription factor ATF4, thereby blocking negative regulation of interferon regulatory factor 7 (IRF7) activation, which enhanced IL-15 transcription. Both IRF7 knockdown and ATF4 overexpression in leukemia cells antagonized sorafenib-induced IL-15 production in vitro. Human FLT3-ITD+ AML cells obtained from sorafenib responders following sorafenib therapy showed increased levels of IL-15, phosphorylated IRF7, and a transcriptionally active IRF7 chromatin state. The mitochondrial spare respiratory capacity and glycolytic capacity of CD8+ T cells increased upon sorafenib treatment in sorafenib responders but not in nonresponders. Our findings indicate that the synergism of T cells and sorafenib is mediated via reduced ATF4 expression, causing activation of the IRF7–IL-15 axis in leukemia cells and thereby leading to metabolic reprogramming of leukemia-reactive T cells in humans. Therefore, sorafenib treatment has the potential to contribute to an immune-mediated cure of FLT3-ITD-mutant AML relapse, an otherwise fatal complication after allo-HCT.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Sorafenib synergizes with allogeneic T cells and improves survival in mouse models of FLT3-ITD-driven AML through increasing IL-15 production.
Figure 2: Sorafenib-induced IL-15 production derives from leukemia cells in vivo and synergizes with T cells in humanized mouse models.
Figure 3: Sorafenib promotes cytotoxicity and longevity of donor CD8+ T cells via IL-15.
Figure 4: Sorafenib induces phosphorylation of IRF7 via reducing levels of its inhibitor ATF4.
Figure 5: Treatment with sorafenib induces IL-15 in human primary FLT3-ITD+ leukemia cells.
Figure 6: Treatment with sorafenib increases the frequency of T cells that are actively glycolytic in patients with FLT3-ITD+ AML who relapse after allo-HCT.

Accession codes

Primary accessions

ArrayExpress

Gene Expression Omnibus

Change history

  • 06 March 2018

    In the version of this article initially published, Omid Shah’s name was misspelled as Omid Sha. The error has been corrected in the PDF and HTML versions of this article.

References

  1. 1

    Pfirrmann, M. et al. Prediction of post-remission survival in acute myeloid leukaemia: a post-hoc analysis of the AML96 trial. Lancet Oncol. 13, 207–214 (2012).

    Article  Google Scholar 

  2. 2

    Sengsayadeth, S.M. et al. Allo-SCT for high-risk AML-CR1 in the molecular era: impact of FLT3/ITD outweighs the conventional markers. Bone Marrow Transplant. 47, 1535–1537 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Serve, H. et al. Sorafenib in combination with intensive chemotherapy in elderly patients with acute myeloid leukemia: results from a randomized, placebo-controlled trial. J. Clin. Oncol. 31, 3110–3118 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Röllig, C. et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicentre, phase 2, randomised controlled trial. Lancet Oncol. 16, 1691–1699 (2015).

    Article  CAS  Google Scholar 

  5. 5

    Metzelder, S.K. et al. High activity of sorafenib in FLT3-ITD-positive acute myeloid leukemia synergizes with allo-immune effects to induce sustained responses. Leukemia 26, 2353–2359 (2012).

    CAS  Article  Google Scholar 

  6. 6

    Tschan-Plessl, A. et al. Synergistic effect of sorafenib and cGvHD in patients with high-risk FLT3-ITD+ AML allows long-term disease control after allogeneic transplantation. Ann. Hematol. 94, 1899–1905 (2015).

    CAS  Article  Google Scholar 

  7. 7

    Krüger, W.H. et al. Molecular remission of FLT3-ITD+ AML relapse after allo-SCT by acute GVHD in addition to sorafenib. Bone Marrow Transplant. 47, 137–138 (2012).

    Article  CAS  Google Scholar 

  8. 8

    Chen, Y.B. et al. Phase I trial of maintenance sorafenib after allogeneic hematopoietic stem cell transplantation for Fms-like tyrosine kinase 3 internal tandem duplication acute myeloid leukemia. Biol. Blood Marrow Transplant. 20, 2042–2048 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Antar, A., Kharfan-Dabaja, M.A., Mahfouz, R. & Bazarbachi, A. Sorafenib maintenance appears safe and improves clinical outcomes in FLT3-ITD acute myeloid leukemia after allogeneic hematopoietic cell transplantation. Clin. Lymphoma Myeloma Leuk. 15, 298–302 (2015).

    Article  Google Scholar 

  10. 10

    Tarlock, K. et al. Sorafenib treatment following hematopoietic stem cell transplant in pediatric FLT3/ITD acute myeloid leukemia. Pediatr. Blood Cancer 62, 1048–1054 (2015).

    CAS  Article  Google Scholar 

  11. 11

    Brunner, A.M. et al. Haematopoietic cell transplantation with and without sorafenib maintenance for patients with FLT3-ITD acute myeloid leukaemia in first complete remission. Br. J. Haematol. 175, 496–504 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Zorko, N.A. et al. Mll partial tandem duplication and Flt3 internal tandem duplication in a double knock-in mouse recapitulates features of counterpart human acute myeloid leukemias. Blood 120, 1130–1136 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Bernot, K.M. et al. Eradicating acute myeloid leukemia in a MllPTD/wt:Flt3ITD/wt murine model: a path to novel therapeutic approaches for human disease. Blood 122, 3778–3783 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Lucas, M., Schachterle, W., Oberle, K., Aichele, P. & Diefenbach, A. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26, 503–517 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Rubio, V. et al. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat. Med. 9, 1377–1382 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Pandiyan, P. et al. The role of IL-15 in activating STAT5 and fine-tuning IL-17A production in CD4 T lymphocytes. J. Immunol. 189, 4237–4246 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Patsoukis, N. et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 6, 6692–6697 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    van Bockel, D.J. et al. Persistent survival of prevalent clonotypes within an immunodominant HIV gag-specific CD8+ T cell response. J. Immunol. 186, 359–371 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Azimi, N., Shiramizu, K.M., Tagaya, Y., Mariner, J. & Waldmann, T.A. Viral activation of interleukin-15 (IL-15): characterization of a virus-inducible element in the IL-15 promoter region. J. Virol. 74, 7338–7348 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Romieu-Mourez, R. et al. Distinct roles for IFN regulatory factor (IRF)-3 and IRF-7 in the activation of antitumor properties of human macrophages. Cancer Res. 66, 10576–10585 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Liang, Q., Deng, H., Sun, C.W., Townes, T.M. & Zhu, F. Negative regulation of IRF7 activation by activating transcription factor 4 suggests a cross-regulation between the IFN responses and the cellular integrated stress responses. J. Immunol. 186, 1001–1010 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Smith, C.C., Lin, K., Stecula, A., Sali, A. & Shah, N.P. FLT3 D835 mutations confer differential resistance to type II FLT3 inhibitors. Leukemia 29, 2390–2392 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Buck, M.D., O'Sullivan, D. & Pearce, E.L. T cell metabolism drives immunity. J. Exp. Med. 212, 1345–1360 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    van der Windt, G.J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    van der Windt, G.J. et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl. Acad. Sci. USA 110, 14336–14341 (2013).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Schultze-Florey, C. et al. TCR diversity is a predictive marker for donor lymphocyte infusion response. Blood 128, 4605 (2016).

    Article  Google Scholar 

  27. 27

    van Bergen, C.A. et al. Selective graft-versus-leukemia depends on magnitude and diversity of the alloreactive T cell response. J. Clin. Invest. 127, 517–529 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Thiant, S. et al. Plasma levels of IL-7 and IL-15 in the first month after myeloablative BMT are predictive biomarkers of both acute GVHD and relapse. Bone Marrow Transplant. 45, 1546–1552 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Sauter, C.T. et al. Interleukin-15 administration increases graft-versus-tumor activity in recipients of haploidentical hematopoietic SCT. Bone Marrow Transplant. 48, 1237–1242 (2013).

    CAS  Article  Google Scholar 

  30. 30

    Chen, G. et al. Expanded donor natural killer cell and IL-2, IL-15 treatment efficacy in allogeneic hematopoietic stem cell transplantation. Eur. J. Haematol. 81, 226–235 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Blaser, B.W. et al. Donor-derived IL-15 is critical for acute allogeneic graft-versus-host disease. Blood 105, 894–901 (2005).

    CAS  Article  Google Scholar 

  32. 32

    Blaser, B.W. et al. Trans-presentation of donor-derived interleukin 15 is necessary for the rapid onset of acute graft-versus-host disease but not for graft-versus-tumor activity. Blood 108, 2463–2469 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Roychowdhury, S. et al. IL-15 but not IL-2 rapidly induces lethal xenogeneic graft-versus-host disease. Blood 106, 2433–2435 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Cario, G. et al. High interleukin-15 expression characterizes childhood acute lymphoblastic leukemia with involvement of the CNS. J. Clin. Oncol. 25, 4813–4820 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Wu, S. et al. Expression of interleukin 15 in primary adult acute lymphoblastic leukemia. Cancer 116, 387–392 (2010).

    CAS  Article  Google Scholar 

  36. 36

    Nasilowska-Adamska, B. et al. Mild chronic graft-versus-host disease may alleviate poor prognosis associated with FLT3 internal tandem duplication for adult acute myeloid leukemia following allogeneic stem cell transplantation with myeloablative conditioning in first complete remission: a retrospective study. Eur. J. Haematol. 96, 236–244 (2016).

    CAS  Article  Google Scholar 

  37. 37

    Barnes, B.J., Moore, P.A. & Pitha, P.M. Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon α genes. J. Biol. Chem. 276, 23382–23390 (2001).

    CAS  Article  Google Scholar 

  38. 38

    Steinmann, J. et al. 5-Azacytidine and DLI can induce long-term remissions in AML patients relapsed after allograft. Bone Marrow Transplant. 50, 690–695 (2015).

    CAS  Article  Google Scholar 

  39. 39

    Bejanyan, N. et al. Survival of patients with acute myeloid leukemia relapsing after allogeneic hematopoietic cell transplantation: a center for international blood and marrow transplant research study. Biol. Blood Marrow Transplant. 21, 454–459 (2015).

    Article  Google Scholar 

  40. 40

    Takami, A. et al. Donor lymphocyte infusion for the treatment of relapsed acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation: a retrospective analysis by the Adult Acute Myeloid Leukemia Working Group of the Japan Society for Hematopoietic Cell Transplantation. Biol. Blood Marrow Transplant. 20, 1785–1790 (2014).

    Article  Google Scholar 

  41. 41

    Buck, M.D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Bolger, A.M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Boeva, V. et al. Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics 28, 423–425 (2012).

    CAS  Article  Google Scholar 

  47. 47

    Carvalho, B.S. & Irizarry, R.A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Luo, W., Friedman, M.S., Shedden, K., Hankenson, K.D. & Woolf, P.J. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinformatics 10, 161 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49

    Kamburov, A., Stelzl, U., Lehrach, H. & Herwig, R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 41, D793–D800 (2013).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Brummer, T. et al. Phosphorylation-dependent binding of 14-3-3 terminates signalling by the Gab2 docking protein. EMBO J. 27, 2305–2316 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Wilhelm, K. et al. Graft-versus-host disease enhanced by extracellular adenosine triphosphate activating P2X7R. Nat. Med. 16, 1434–1438 (2010).

    CAS  Article  Google Scholar 

  52. 52

    Schwab, L. et al. Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance GvHD via tissue damage. Nat. Med. 20, 648–654 (2014).

    CAS  Article  Google Scholar 

  53. 53

    Kaplan, D.H. et al. Target antigens determine graft-versus-host disease phenotype. J. Immunol. 173, 5467–5475 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank G. Prinz and H. Dierbach for their help with mouse experiments, K. Geiger and D. Herchenbach for cell sorting, and S. Decker (University of Freiburg) for providing NSG mice. We thank M.E.D. Flowers (University of Washington) for help with patient data. We thank D. Cittaro for the help with bioinformatic analysis. Il15−/− mice were provided by Y. Tanriver (University of Freiburg). Il15−/− mice were provided by B. Becher (University of Zurich).

This study was supported by the German Research Foundation (DFG) Heisenberg Professorship ZE 872/3-1 (R.Z.), DFG Sonderforschungsbereiche 1074 (SFB1074; F.K.), SFB1160 (R.Z.), SFB850 (T.B.), and TRR167 (R.Z.); European Research Council (ERC) Consolidator Grant no. 681012 GvHDCure (R.Z.); Deutsche Krebshilfe no. 111639 (G.H., R.Z.); Deutsche Jose Carreras Leukämie-Stiftung (DJCLS; G.H., R.Z.); Else Kröner-Fresenius Foundation (EKF) Stiftung no. 2015_A147 (P.A.), INTERREG V Rhin Supérieur (P.A., R.Z.); LOEWE–Gentherapie Frankfurt (CGT), Hessian Ministry of Higher Education, Research and the Arts, Germany no. III L 4- 518/17.004 (E.U.); Max-Eder-Nachwuchsgruppenprogramm, Deutsche Krebshilfe no. 109420 (F.K.); European Hematology Association fellowship 2010/04 (F.K.); and National Institutes of Health (NIH) grant no. R01 CA-72669 (B.R.B.). E.R. was supported by a fellowship from Associazione Italiana per la Ricerca sul Cancro (AIRC) that was cofunded by the European Union.

Author information

Affiliations

Authors

Contributions

N.R.M. performed the majority of the experiments, helped develop the overall concept behind the study, and helped write the manuscript. F.B. helped with the experiments and with development of the overall concept behind the study. L.B. performed ATF4 overexpression experiments. D.O'S. helped with Seahorse analysis. S. Thomas and S. Tugues helped with mouse experiments. M.W., T.A.M., K.H., P.A., A.L.I., G.I., K.S., W.M., S. Duqusne and A.W. helped with experiments and data interpretation. A.S.-G. performed immunohistological analysis. L.O. and K.-L.Y. helped with experiments. D.P., M.F., R. Claus, M. Lübbert, C.R., H. Bertz, R.W., J.H., A. Schmidts, M.S., D. Bettinger, R.T., E.U., Y.T., G.L.V., R.A., P.H., D. Wolf, M.D., C.J., K.W., C. Leiber, S. Gerull, J.H., C. Lengerke, T.P., T.S., G.K., W.R., S. Doostkam, S.M., and S.K.M. provided patient data. S. Taromi, S.S., and B.B. helped with mouse experiments. S.H. and T.B. helped with western blot and knockdown experiments. Z.H. and J. Dengjel performed mass spectrometry and data analysis. S.K. and B.K. performed mass spectrometry of sorafenib binding partners and kinome analysis. B.H., C. Schmid, U.H., C. Scheid, A. Spyridonidis, F.S., R.O., L.P.M., F.S.-d.-F., and J.K. provided patient data and helped with the analysis. M.P. performed analysis of the biopsy specimen. A.B., A. Nagler, D. Bunjes, A.M., W.H., and G.S. provided patient data and helped develop the overall concept behind the study. J.E.E. and D.F. analyzed the level of FLT3 inhibition upon sorafenib exposure. E.-M.W., J.-Y.C., F.K., D. Beelen, R. Chakraverty, S.R., S. Gill, N.K., F.A., L.V., J.S., and F.C. provided and analyzed patient data. E.R. and C.B. performed TRC sequencing and analyzed related data. A.M.M., T.K., T.T., B.K., D.K., D. Weisdorf, W.v.d.V., D.D., W.B., I.H., A.H., G.A., M. Börries, H. Busch, J.M., P.R., M. Labopin, J.H.A., A.S.H., G.R.H., G.A.K., M. Bar, A. Sarma, D.M., G.M., B.O., K.R., O.S., R.S.N., and A. Neubauer provided and analyzed patient data. E.U. and M.A.C. provided reagents and contributed to the development of the concept behind the study and the manuscript. B.R.B., N.v.B., and G.H. provided reagents, helped with the experiments, and analyzed data. E.P. helped to plan and analyze the T cell metabolism experiments. J. Duyster and J.F. helped develop the concept behind the study, analyze the data, and write the manuscript. R.Z. developed the overall concept behind the study, supervised the experiments, analyzed the data, and wrote the manuscript.

Corresponding author

Correspondence to Robert Zeiser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures & Tables

Supplementary Figures 1–21 & Supplementary Tables 2–12 (PDF 8654 kb)

Life Sciences Reporting Summary (PDF 274 kb)

Supplementary Table 1

Patients raw data (XLSX 69 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mathew, N., Baumgartner, F., Braun, L. et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat Med 24, 282–291 (2018). https://doi.org/10.1038/nm.4484

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing