Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Brown adipose tissue thermogenic adaptation requires Nrf1-mediated proteasomal activity


Adipocytes possess remarkable adaptive capacity to respond to nutrient excess, fasting or cold exposure, and they are thus an important cell type for the maintenance of proper metabolic health. Although the endoplasmic reticulum (ER) is a critical organelle for cellular homeostasis, the mechanisms that mediate adaptation of the ER to metabolic challenges in adipocytes are unclear. Here we show that brown adipose tissue (BAT) thermogenic function requires an adaptive increase in proteasomal activity to secure cellular protein quality control, and we identify the ER-localized transcription factor nuclear factor erythroid 2–like 1 (Nfe2l1, also known as Nrf1) as a critical driver of this process. We show that cold adaptation induces Nrf1 in BAT to increase proteasomal activity and that this is crucial for maintaining ER homeostasis and cellular integrity, specifically when the cells are in a state of high thermogenic activity. In mice, under thermogenic conditions, brown-adipocyte-specific deletion of Nfe2l1 (Nrf1) resulted in ER stress, tissue inflammation, markedly diminished mitochondrial function and whitening of the BAT. In mouse models of both genetic and dietary obesity, stimulation of proteasomal activity by exogenously expressing Nrf1 or by treatment with the proteasome activator PA28α in BAT resulted in improved insulin sensitivity. In conclusion, Nrf1 emerges as a novel guardian of brown adipocyte function, providing increased proteometabolic quality control for adapting to cold or to obesity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Proteasomal activity is induced during cold adaptation and is required for nonshivering thermogenesis in BAT.
Figure 2: Nrf1 is a cold-inducible regulator of proteasome function in brown fat.
Figure 3: Nrf1 is a fundamental regulator of BAT adaptation.
Figure 4: The brown fat ubiquitome.
Figure 5: Nrf1-mediated proteasomal activity is linked to obesity-associated disorders.
Figure 6: Enhancing proteostasis in BAT alleviates insulin resistance in DIO and ob/ob mice.


  1. 1

    Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    CAS  PubMed  Article  Google Scholar 

  2. 2

    Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011).

    CAS  PubMed  Article  Google Scholar 

  3. 3

    Stanford, K.I. et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest. 123, 215–223 (2013).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Berbée, J.F. et al. Brown fat activation reduces hypercholesterolemia and protects from atherosclerosis development. Nat. Commun. 6, 6356 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5

    Bartelt, A. et al. Thermogenic adipocytes promote HDL turnover and reverse cholesterol transport. Nat. Commun. 8, 15010 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Kajimura, S., Spiegelman, B.M. & Seale, P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 22, 546–559 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Gnad, T. et al. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516, 395–399 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Rothwell, N.J. & Stock, M.J. A role for brown adipose tissue in diet-induced thermogenesis. Nature 281, 31–35 (1979).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Feldmann, H.M., Golozoubova, V., Cannon, B. & Nedergaard, J. Ucp1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9, 203–209 (2009).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Shimizu, I. et al. Vascular rarefaction mediates whitening of brown fat in obesity. J. Clin. Invest. 124, 2099–2112 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Cypess, A.M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Travers, K.J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded-protein response and ER-associated degradation. Cell 101, 249–258 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Friedlander, R., Jarosch, E., Urban, J., Volkwein, C. & Sommer, T. A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat. Cell Biol. 2, 379–384 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Goldberg, A.L. Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895–899 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded-protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Hotamisligil, G.S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Yang, L. et al. METABOLISM. S-nitrosylation links obesity-associated inflammation to endoplasmic reticulum dysfunction. Science 349, 500–506 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Otoda, T. et al. Proteasome dysfunction mediates obesity-induced endoplasmic reticulum stress and insulin resistance in the liver. Diabetes 62, 811–824 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Wikstrom, J.D. et al. Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. EMBO J. 33, 418–436 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Arruda, A.P. et al. Chronic enrichment of hepatic endoplasmic reticulum–mitochondria contact leads to mitochondrial dysfunction in obesity. Nat. Med. 20, 1427–1435 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Gregor, M.F. et al. The role of adipocyte XBP1 in metabolic regulation during lactation. Cell Rep. 3, 1430–1439 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Wang, W. & Chan, J.Y. Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain. Inhibition of nuclear translocation and transacting function. J. Biol. Chem. 281, 19676–19687 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Cannon, B. & Nedergaard, J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J. Exp. Biol. 214, 242–253 (2011).

    Article  Google Scholar 

  26. 26

    Adams, J. et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59, 2615–2622 (1999).

    CAS  Google Scholar 

  27. 27

    Sha, Z. & Goldberg, A.L. Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97. Curr. Biol. 24, 1573–1583 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Arastu-Kapur, S. et al. Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events. Clin. Cancer Res. 17, 2734–2743 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Fu, S. et al. Phenotypic assays identify azoramide as a small-molecule modulator of the unfolded-protein response with antidiabetic activity. Sci. Transl. Med. 7, 292ra98 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30

    Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action and type 2 diabetes. Science 306, 457–461 (2004).

    Article  CAS  Google Scholar 

  31. 31

    Steffen, J., Seeger, M., Koch, A. & Krüger, E. Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol. Cell 40, 147–158 (2010).

    CAS  Article  Google Scholar 

  32. 32

    Radhakrishnan, S.K. et al. Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol. Cell 38, 17–28 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Kahn, N.W., Rea, S.L., Moyle, S., Kell, A. & Johnson, T.E. Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans. Biochem. J. 409, 205–213 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Xue, R. et al. Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat. Med. 21, 760–768 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Bartelt, A. & Heeren, J. Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol. 10, 24–36 (2014).

    CAS  Article  Google Scholar 

  36. 36

    Peirce, V., —, S. & Vidal-Puig, A. The different shades of fat. Nature 510, 76–83 (2014).

    CAS  Article  Google Scholar 

  37. 37

    Rosen, E.D. & Spiegelman, B.M. What we talk about when we talk about fat. Cell 156, 20–44 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Bruns, O.T. et al. Next-generation in vivo optical imaging with shortwave infrared quantum dots. Nat. Biomed. Eng. 1 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Hershko, A. & Ciechanover, A. The ubiquitin system for protein degradation. Annu. Rev. Biochem. 61, 761–807 (1992).

    CAS  Article  Google Scholar 

  40. 40

    Kulathu, Y. & Komander, D. Atypical ubiquitylation—the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat. Rev. Mol. Cell Biol. 13, 508–523 (2012).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325–340 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Wagner, S.A. et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell Proteomics 10, M111.013284 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. 43

    Mootha, V.K. et al. Integrated analysis of protein composition, tissue diversity and gene regulation in mouse mitochondria. Cell 115, 629–640 (2003).

    CAS  Article  Google Scholar 

  44. 44

    Clarke, K.J. et al. A role for ubiquitinylation and the cytosolic proteasome in turnover of mitochondrial uncoupling protein 1 (UCP1). Biochim. Biophys. Acta 1817, 1759–1767 (2012).

    CAS  Article  Google Scholar 

  45. 45

    Mootha, V.K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    CAS  Article  Google Scholar 

  46. 46

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Kamburov, A. et al. ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res. 39, D712–D717 (2011).

    CAS  Article  Google Scholar 

  48. 48

    Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Weisberg, S.P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Lumeng, C.N., Bodzin, J.L. & Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Hotamisligil, G.S., Shargill, N.S. & Spiegelman, B.M. Adipose expression of tumor necrosis factor–α: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    CAS  Article  Google Scholar 

  52. 52

    Kim, J.Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117, 2621–2637 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Li, J. et al. Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia–reperfusion injury in mice. J. Clin. Invest. 121, 3689–3700 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54

    Zhang, Y. et al. Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 513, 440–443 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Lee, C.S., Ho, D.V. & Chan, J.Y. Nuclear factor–erythroid-2-related factor 1 regulates expression of proteasome genes in hepatocytes and protects against endoplasmic reticulum stress and steatosis in mice. FEBS J. 280, 3609–3620 (2013).

    CAS  Article  Google Scholar 

  56. 56

    Wahl, S. et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541, 81–86 (2017).

    CAS  Article  Google Scholar 

  57. 57

    Zhang, Y. & Xiang, Y. Molecular and cellular basis for the unique functioning of Nrf1, an indispensable transcription factor for maintaining cell homoeostasis and organ integrity. Biochem. J. 473, 961–1000 (2016).

    CAS  Article  Google Scholar 

  58. 58

    Widenmaier, S.B. et al. NRF1 is an ER membrane sensor that is central to cholesterol homeostasis. Cell 171, 1094–1109 (2017).

    CAS  Article  Google Scholar 

  59. 59

    Tsujita, T. et al. Discovery of an NRF1-specific inducer from a large-scale chemical library using a direct NRF1–protein monitoring system. Genes Cells 20, 563–577 (2015).

    CAS  Article  Google Scholar 

  60. 60

    Li, F., Gao, B., Dong, H., Shi, J. & Fang, D. Icariin induces synoviolin expression through NFE2L1 to protect neurons from ER-stress-induced apoptosis. PLoS One 10, e0119955 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. 61

    Kong, X. et al. IRF4 is a key thermogenic transcriptional partner of PGC-1α. Cell 158, 69–83 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Tschöp, M.H. et al. A guide to analysis of mouse energy metabolism. Nat. Methods 9, 57–63 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. 63

    Cypess, A.M. et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat. Med. 19, 635–639 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64

    Rodbell, M. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J. Biol. Chem. 239, 375–380 (1964).

    CAS  Google Scholar 

  65. 65

    Brand, M.D. & Nicholls, D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 435, 297–312 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Cannon, B. & Nedergaard, J. Studies of thermogenesis and mitochondrial function in adipose tissues. Methods Mol. Biol. 456, 109–121 (2008).

    Article  Google Scholar 

  67. 67

    Orr, A.L., Quinlan, C.L., Perevoshchikova, I.V. & Brand, M.D. A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase. J. Biol. Chem. 287, 42921–42935 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68

    Haemmerle, G. et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312, 734–737 (2006).

    CAS  Article  Google Scholar 

  69. 69

    Luo, J. et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat. Protoc. 2, 1236–1247 (2007).

    CAS  PubMed  Article  Google Scholar 

Download references


We are grateful to K. Claiborn for her expert editorial input, M. McGrath for his support of the project, M. Yilmaz, Y. Lee and V. Byles for assistance with experiments, K. Seedorf, P. Delerive and Servier for their continuous support of the project, R. Bronson and the Harvard Medical School Rodent Histopathology Core, M. Ericson and the Harvard Medical School Electron Microscopy Facility, N. Lupoli and the Harvard T.H. Chan School of Public Health Trace Metals Laboratory, and R. Kunz and the Thermo Fisher Scientific Center for Multiplexed Proteomics at Harvard Medical School and the Harvard T.H. Chan School of Public Health Animal Facility team for their support of the project. We acknowledge the prosperous scientific environment in the Hotamisligil lab and thank all lab members for their critical input and discussions. We are grateful to X. Wang (University of South Dakota) for generously sharing the PA28α-expressing adenovirus, E. Rosen (Beth Israel Deaconess Medical Center) for providing us with the Ucp1–Cre and the Adipoq–Cre mouse models and T. Iwawaki (Gunma University) for the conditional Ern1-deletion mouse model. A.B. was supported by a Deutsche Forschungsgemeinschaft Research Fellowship (BA 4925/1-1). S.B.W. was supported by a Canadian Institutes of Health Research fellowship. C.S. was supported by a University Medical Center Hamburg–Eppendorf MD/PhD program fellowship. R.L.S.G. was supported by the Barth Syndrome Foundation. This work has received support in part from the US National Institutes of Health (NIH) through the Laser Biomedical Research Center grants P41-EB015871 (M.G.B.) and 5-U54-CA151884 (M.G.B.), by the National Science Foundation grant ECCS-1449291 (D.F. and M.G.B.) and by the Massachusetts Institute of Technology through the Institute for Soldier Nanotechnologies grant W911NF-13-D-0001 (M.G.B.). D.F. was supported by a fellowship of the Boehringer Ingelheim Fonds. O.T.B. was supported by a European Molecular Biology Organization Long-term Fellowship. Y.-H.T. and L.O.L. were supported in part by NIH grants R01DK077097, R01DK102898 and P30DK036836. M.D.L. was supported by NIH grants T32DK007260, F32DK102320 and K01DK111714. A.P.A. was supported by the Pew Foundation. We apologize to colleagues whose work we could not cite due to space limitations. The study was supported by an industry-sponsored research agreement between Harvard University and Servier.

Author information




A.B. and S.B.W. designed the study, were involved in all aspects of the experiments, analyzed all data and wrote the manuscript; C.S. and K.J. performed in vitro experiments; R.L.S.G. performed mitochondrial isolations and Seahorse experiments; K.E. performed flow cytometry experiments; A.W.F. performed immunohistochemistry; G.P., N.A.S. and T.B.N. were involved in animal experiments; O.T.B., D.F. and M.G.B. developed quantum dots and performed SWIR imaging; L.O.L. performed thermal imaging; M.D.L. and Y.-H.T. performed bioinformatics analyses; A.P.A. and K.E.I. helped with the design of the study and animal experiments; and G.S.H. supervised the design and execution of the study, interpreted the results and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Gökhan S Hotamisligil.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Supplementary Figures 1–13 and Supplementary Methods (PDF 5513 kb)

Life Sciences Reporting Summary (PDF 190 kb)

Supplementary Table 1

The brown fat ubiquitome (XLSX 3031 kb)

Supplementary Table 2

The Differential brown fat ubiquitome (XLSX 1589 kb)

Supplementary Table 3

Pathway analysis of hyperubiquitinated proteins (XLSX 67 kb)

Supplementary Table 4

Plasma parameters in high-fat diet-fed wild-type and Nfe2l1ΔBAT mice (XLSX 40 kb)

Supplementary Table 5

Additional information on adenoviral experiments (XLSX 41 kb)

Supplementary Table 6

Primers and antibodies information (XLSX 43 kb)

SWIR-QD-lipoprotein uptake imaging of a cold-exposed wild-type mouse: A representative SWIR movie of a cold-exposed control wild-type mouse. After tail vein injection, lipoproteins labeled with short-wave infrared (SWIR) quantum dots (QD) are taken up into liver, spleen and brown adipose tissue. (AVI 14278 kb)

SWIR-QD-lipoprotein uptake imaging of a cold-exposed Nfe2lΔBAT mouse: A representative SWIR movie of a cold-exposed control Nfe2lΔBAT mouse. After tail vein injection, lipoproteins labeled with short-wave infrared (SWIR) quantum dots (QD) are taken up into liver, spleen but not into brown adipose tissue. (AVI 13941 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bartelt, A., Widenmaier, S., Schlein, C. et al. Brown adipose tissue thermogenic adaptation requires Nrf1-mediated proteasomal activity. Nat Med 24, 292–303 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing