Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A small-molecule inhibitor of the ubiquitin activating enzyme for cancer treatment

Abstract

The ubiquitin–proteasome system (UPS) comprises a network of enzymes that is responsible for maintaining cellular protein homeostasis. The therapeutic potential of this pathway has been validated by the clinical successes of a number of UPS modulators, including proteasome inhibitors and immunomodulatory imide drugs (IMiDs). Here we identified TAK-243 (formerly known as MLN7243) as a potent, mechanism-based small-molecule inhibitor of the ubiquitin activating enzyme (UAE), the primary mammalian E1 enzyme that regulates the ubiquitin conjugation cascade. TAK-243 treatment caused depletion of cellular ubiquitin conjugates, resulting in disruption of signaling events, induction of proteotoxic stress, and impairment of cell cycle progression and DNA damage repair pathways. TAK-243 treatment caused death of cancer cells and, in primary human xenograft studies, demonstrated antitumor activity at tolerated doses. Due to its specificity and potency, TAK-243 allows for interrogation of ubiquitin biology and for assessment of UAE inhibition as a new approach for cancer treatment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: TAK-243 is a mechanism-based, cell-active inhibitor of UAE.
Figure 2: TAK-243 inhibits cellular ubiquitin conjugation, which leads to substrate stabilization, cell cycle arrest, ER stress and an impaired DNA damage response.
Figure 3: TAK-243 induces a pharmacodynamic (PD) response in xenograft tumors.
Figure 4: TAK-243 treatment has antitumor activity in mice bearing subcutaneous xenograft tumors.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. 1

    Jin, J., Li, X., Gygi, S.P. & Harper, J.W. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 447, 1135–1138 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. 2

    Swatek, K.N. & Komander, D. Ubiquitin modifications. Cell Res. 26, 399–422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Richardson, P.G. et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med. 348, 2609–2617 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. 5

    Brownell, J.E. et al. Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8–AMP mimetic in situ. Mol. Cell 37, 102–111 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Huang, X. & Dixit, V.M. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 26, 484–498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Bedford, L., Lowe, J., Dick, L.R., Mayer, R.J. & Brownell, J.E. Ubiquitin-like protein conjugation and the ubiquitin–proteasome system as drug targets. Nat. Rev. Drug Discov. 10, 29–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. 8

    Anderson, D.J. et al. Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of protein homeostasis. Cancer Cell 28, 653–665 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Krönke, J. et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 523, 183–188 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    McGrath, J.P., Jentsch, S. & Varshavsky, A. UBA1: an essential yeast gene encoding ubiquitin-activating enzyme. EMBO J. 10, 227–236 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Kulkarni, M. & Smith, H.E. E1 ubiquitin-activating enzyme UBA1 plays multiple roles throughout C. elegans development. PLoS Genet. 4, e1000131 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Misra, M. et al. Dissecting the specificity of adenosyl sulfamate inhibitors targeting the ubiquitin-activating enzyme. Structure 25, 1120–1129 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Amidon, B.S. et al. Indole-substituted pyrrolopyrimidinyl inhibitors of Uba6. US Patent 9593121B2. (2017).

  14. 14

    Soucy, T.A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732–736 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Hershko, A. The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ. 12, 1191–1197 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Gu, J.J. et al. MLN2238, a proteasome inhibitor, induces caspase-dependent cell death, cell cycle arrest, and potentiates the cytotoxic activity of chemotherapy agents in rituximab-chemotherapy-sensitive or rituximab-chemotherapy-resistant B cell lymphoma preclinical models. Anticancer Drugs 24, 1030–1038 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Milhollen, M.A. et al. Inhibition of NEDD8-activating enzyme induces re-replication and apoptosis in human tumor cells consistent with de-regulating CDT1 turnover. Cancer Res. 71, 3042–3051 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Ulrich, H.D. Ubiquitin and SUMO in DNA repair at a glance. J. Cell Sci. 125, 249–254 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Christianson, J.C. & Ye, Y. Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nat. Struct. Mol. Biol. 21, 325–335 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Moudry, P. et al. Ubiquitin-activating enzyme UBA1 is required for cellular response to DNA damage. Cell Cycle 11, 1573–1582 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Ungermannova, D. et al. Identification and mechanistic studies of a novel ubiquitin E1 inhibitor. J. Biomol. Screen. 17, 421–434 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Collins, A.R. The comet assay for DNA damage and repair: principles, applications and limitations. Mol. Biotechnol. 26, 249–261 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. 23

    Vlachostergios, P.J., Patrikidou, A., Daliani, D.D. & Papandreou, C.N. The ubiquitin–proteasome system in cancer, a major player in DNA repair. Part 2: transcriptional regulation. J. Cell. Mol. Med. 13 9B, 3019–3031 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Wildey, G. et al. Pharmacogenomic approach to identify drug sensitivity in small-cell-lung cancer. PLoS One 9, e106784 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Wilmott, J.S. et al. BRAFV600E protein expression and outcome from BRAF inhibitor treatment in BRAFV600E metastatic melanoma. Br. J. Cancer 108, 924–931 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Huang, J. et al. NEDD8 inhibition overcomes CKS1B-induced drug resistance by upregulation of p21 in multiple myeloma. Clin. Cancer Res. 21, 5532–5542 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Milhollen, M.A. et al. Treatment-emergent mutations in NAEβ confer resistance to the NEDD8-activating enzyme inhibitor MLN4924. Cancer Cell 21, 388–401 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Yang, Y. et al. Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res. 67, 9472–9481 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Xu, G.W. et al. The ubiquitin-activating enzyme E1 as a therapeutic target for the treatment of leukemia and multiple myeloma. Blood 115, 2251–2259 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Gilbert, L.A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Wang, T., Wei, J.J., Sabatini, D.M. & Lander, E.S. Genetic screens in human cells using the CRISPR–Cas9 system. Science 343, 80–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Yau, R. & Rape, M. The increasing complexity of the ubiquitin code. Nat. Cell Biol. 18, 579–586 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Chen, J.J. et al. Mechanistic studies of substrate-assisted inhibition of ubiquitin-activating enzyme by adenosine sulfamate analogs. J. Biol. Chem. 286, 40867–40877 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Gavin, J.M. et al. Mechanistic studies on activation of ubiquitin and di-ubiquitin-like protein, FAT10, by ubiquitin-like-modifier-activating enzyme 6, Uba6. J. Biol. Chem. 287, 15512–15522 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Leslie, A.G. The integration of macromolecular diffraction data. Acta Crystallogr. D Biol. Crystallogr. 62, 48–57 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  CAS  Google Scholar 

  39. 39

    Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. A graphical user interface to the CCP4 program suite. Acta Crystallogr. D Biol. Crystallogr. 59, 1131–1137 (2003).

    Article  PubMed  Google Scholar 

  40. 40

    Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Manfredi, M.G. et al. Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc. Natl. Acad. Sci. USA 104, 4106–4111 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Pocock, S.J. & Simon, R. Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. Biometrics 31, 103–115 (1975).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Duffey, M.O. et al. Discovery of a potent and orally bioavailable benzolactam-derived inhibitor of Polo-like kinase 1 (MLN0905). J. Med. Chem. 55, 197–208 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    National Research Council. Guide for the Care and Use of Laboratory Animals 8th edn. (The National Academies Press, 2011).

Download references

Acknowledgements

The authors would like to thank W. Harper (Harvard Medical School) for the UBA6-knockout and control MEFs, A. Berger for critical review of the manuscript, and E. Koenig and P. Shah for genomic data analysis. We would also like to thank J. Afroze, I. Bharathan, J. Gaulin, M. Girad, C. McIntyre, F. Soucy, T.T. Wong and Y. Ye for performing the chemical synthesis of TAK-243. All activities were completed and funded through Takeda Pharmaceuticals Inc.

Author information

Affiliations

Authors

Contributions

M.L.H., M.A.M., N.F.B., B.S.A., J.G. and L.R.D. participated in writing, reviewing and editing of the manuscript; M.L.H., M.A.M. and N.F.B. participated in the planning, initiation, data generation and analysis of biological experiments; J.C., S.L. and P.F. participated in the planning, initiation, design and execution of chemical synthesis; M.S. and N.B. performed crystallography experiments; J.P. was the toxicology representative on the program; J.G., T.S., F.B. and J.B. performed biochemical analyses; M.A.M., D.S., J.D., C.R., J.R. and K.H. performed in vitro cell culture experiments; M.L.H., T.T., J.H., J.S. and S.M.P. performed in vivo antitumor activity and pharmacodynamic experiments; A.L. and S.M. evaluated compound potencies in cell-based assays; Y.Y. and B.S. performed immunohistochemistry experiments; R.G. performed pharmacokinetic analyses; B.S.A., S.T., M.K., P.V., J.N., P.L., J.T.W., P.G., K.G., M.M. and C.C. provided project oversight and review.

Corresponding author

Correspondence to Michael A Milhollen.

Ethics declarations

Competing interests

All of the authors were employees of Takeda Pharmaceuticals at the time of these studies.

Supplementary information

Supplementary Figures & Tables

Supplementary Figures 1–16 & Supplementary Tables 1, 3 (PDF 5164 kb)

41591_2018_BFnm4474_MOESM2_ESM.pdf

Life Sciences Reporting Summary (PDF 208 kb)

Supplementary Table 2

Selectivity profiling of TAK-243 against kinases, cellular receptors (Novascreen) and carbonic anhydrases. (XLSX 30 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hyer, M., Milhollen, M., Ciavarri, J. et al. A small-molecule inhibitor of the ubiquitin activating enzyme for cancer treatment. Nat Med 24, 186–193 (2018). https://doi.org/10.1038/nm.4474

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing