Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recurrent ECSIT mutation encoding V140A triggers hyperinflammation and promotes hemophagocytic syndrome in extranodal NK/T cell lymphoma

Abstract

Hemophagocytic syndrome (HPS) is a fatal hyperinflammatory disease with a poorly understood mechanism that occurs most frequently in extranodal natural killer/T cell lymphoma (ENKTL). Through exome sequencing of ENKTL tumor–normal samples, we have identified a hotspot mutation (c.419T>C) in the evolutionarily conserved signaling intermediate in Toll pathway (ECSIT) gene, encoding a V140A variant of ECSIT. ECSIT-V140A activated NF-κB more potently than the wild-type protein owing to its increased affinity for the S100A8 and S100A9 heterodimer, which promotes NADPH oxidase activity. ECSIT-T419C knock-in mice showed higher peritoneal NADPH oxidase activity than mice with wild-type ECSIT in response to LPS. ECSIT-T419C-transfected ENKTL cell lines produced tumor necrosis factor (TNF)-α and interferon (IFN)-γ, which induced macrophage activation and massive cytokine secretion in cell culture and mouse xenografts. In individuals with ENKTL, ECSIT-V140A was associated with activation of NF-κB, higher HPS incidence, and poor prognosis. The immunosuppressive drug thalidomide prevented NF-κB from binding to the promoters of its target genes (including TNF and IFNG), and combination treatment with thalidomide and dexamethasone extended survival of mice engrafted with ECSIT-T419C-transfected ENKTL cells. We added thalidomide to the conventional dexamethasone-containing therapy regimen for two patients with HPS who expressed ECSIT-V140A, and we observed reversal of their HPS and disease-free survival for longer than 3 years. These findings provide mechanistic insights and a potential therapeutic strategy for ENKTL-associated HPS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frequent somatic ECSIT-T419C mutation activates the NF-κB pathway in ENKTL.
Figure 2: ECSIT-V140A activates the NF-κB pathway through binding to the S100A8/A9 heterodimer.
Figure 3: ECSIT-V140A induces macrophage activation and is associated with HPS occurrence in patients with ENKTL.
Figure 4: ECSIT-V140A induces hyperinflammation in a xenograft mouse model.
Figure 5: THAD and DEXA combination treatment relieves ECSIT-V140A-induced hyperinflammation in ENKTL.
Figure 6: The effect of THAD and DEXA combination treatment against NK/T-LAHPS.

Similar content being viewed by others

Accession codes

Primary accessions

BioProject

Referenced accessions

Protein Data Bank

References

  1. Janka, G.E. & Lehmberg, K. Hemophagocytic lymphohistiocytosis: pathogenesis and treatment. Am. Soc. Hematol. Educ. Program 2013, 605–611 (2013).

    Article  Google Scholar 

  2. Janka, G. & zur Stadt, U. Familial and acquired hemophagocytic lymphohistiocytosis. Am. Soc. Hematol. Educ. Program 2005, 82–88 (2005).

    Article  Google Scholar 

  3. Weitzman, S. Approach to hemophagocytic syndromes. Am. Soc. Hematol. Educ. Program 2011, 178–183 (2011).

    Article  Google Scholar 

  4. Filipovich, A., McClain, K. & Grom, A. Histiocytic disorders: recent insights into pathophysiology and practical guidelines. Biol. Blood Marrow Transplant. 16 (Suppl.),S82–S89 (2010).

    Article  PubMed  Google Scholar 

  5. Han, L. et al. Clinical features and treatment of natural killer/T cell lymphoma associated with hemophagocytic syndrome: comparison with other T cell lymphoma associated with hemophagocytic syndrome. Leuk. Lymphoma 55, 2048–2055 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Tzannou, I., Balta, A.M. & Bakiri, M. Hemophagocytic syndrome associated with hematologic malignancies. Hospital Chronicles 6, 110–117 (2011).

    Google Scholar 

  7. Han, A.R. et al. Lymphoma-associated hemophagocytic syndrome: clinical features and treatment outcome. Ann. Hematol. 86, 493–498 (2007).

    Article  PubMed  Google Scholar 

  8. Takahashi, N., Miura, I., Chubachi, A., Miura, A.B. & Nakamura, S. A clinicopathological study of 20 patients with T/natural killer (NK)-cell lymphoma-associated hemophagocytic syndrome with special reference to nasal and nasal-type NK/T-cell lymphoma. Int. J. Hematol. 74, 303–308 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. International T-Cell Lymphoma Project. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J. Clin. Oncol. 26, 4124–4130 (2008).

  10. Li, Y.-X. et al. Radiotherapy as primary treatment for stage IE and IIE nasal natural killer/T-cell lymphoma. J. Clin. Oncol. 24, 181–189 (2006).

    Article  PubMed  Google Scholar 

  11. Laurent, C. et al. Impact of expert pathologic review of lymphoma diagnosis: study of patients from the french lymphopath network. J. Clin. Oncol. 35, 2008–2017 (2017).

    Article  PubMed  Google Scholar 

  12. Allory, Y. et al. Bone marrow involvement in lymphomas with hemophagocytic syndrome at presentation: a clinicopathologic study of 11 patients in a Western institution. Am. J. Surg. Pathol. 25, 865–874 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Lay, J.D., Tsao, C.J., Chen, J.Y., Kadin, M.E. & Su, I.J. Upregulation of tumor necrosis factor-α gene by Epstein–Barr virus and activation of macrophages in Epstein–Barr virus–infected T cells in the pathogenesis of hemophagocytic syndrome. J. Clin. Invest. 100, 1969–1979 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sano, H. et al. Risk factor analysis of non-Hodgkin lymphoma–associated haemophagocytic syndromes: a multicentre study. Br. J. Haematol. 165, 786–792 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Cheung, M.M. et al. Primary non-Hodgkin's lymphoma of the nose and nasopharynx: clinical features, tumor immunophenotype, and treatment outcome in 113 patients. J. Clin. Oncol. 16, 70–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, L. et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat. Genet. 47, 1061–1066 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Dobashi, A. et al. Frequent BCOR aberrations in extranodal NK/T-cell lymphoma, nasal type. Genes Chromosom. Cancer 55, 460–471 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Koo, G.C. et al. Janus kinase 3–activating mutations identified in natural killer/T-cell lymphoma. Cancer Discov. 2, 591–597 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Bouchekioua, A. et al. JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal-type natural killer cell lymphoma. Leukemia 28, 338–348 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Küçük, C. et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat. Commun. 6, 6025 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Kopp, E. et al. ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev. 13, 2059–2071 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xiao, C. et al. Ecsit is required for Bmp signaling and mesoderm formation during mouse embryogenesis. Genes Dev. 17, 2933–2949 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Soler-López, M., Badiola, N., Zanzoni, A. & Aloy, P. Towards Alzheimer's root cause: ECSIT as an integrating hub between oxidative stress, inflammation and mitochondrial dysfunction. Hypothetical role of the adapter protein ECSIT in familial and sporadic Alzheimer's disease pathogenesis. BioEssays 34, 532–541 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Oeckinghaus, A., Hayden, M.S. & Ghosh, S. Crosstalk in NF-κB signaling pathways. Nat. Immunol. 12, 695–708 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Heide, H. et al. Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex. Cell Metab. 16, 538–549 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Markowitz, J. & Carson, W.E. Review of S100A9 biology and its role in cancer. Biochim. Biophys. Acta 1835, 100–109 (2013).

    CAS  PubMed  Google Scholar 

  27. Kerkhoff, C. et al. The arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac-2. FASEB J. 19, 467–469 10.1096/fj.04–2377fje (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Sopalla, C., Leukert, N., Sorg, C. & Kerkhoff, C. Evidence for the involvement of the unique C-tail of S100A9 in the binding of arachidonic acid to the heterocomplex S100A8/A9. Biol. Chem. 383, 1895–1905 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Leaver-Fay, A. et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grivennikov, S.I., Greten, F.R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Henter, J.-I. et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer 48, 124–131 (2007).

    Article  PubMed  Google Scholar 

  32. Brady, M.E., Sartiano, G.P., Rosenblum, S.L., Zaglama, N.E. & Bauguess, C.T. The pharmacokinetics of single high doses of dexamethasone in cancer patients. Eur. J. Clin. Pharmacol. 32, 593–596 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. Teo, S.K. et al. Clinical pharmacokinetics of thalidomide. Clin. Pharmacokinet. 43, 311–327 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Papandreou, C.N. et al. Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J. Clin. Oncol. 22, 2108–2121 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Daver, N. et al. A consensus review on malignancy-associated hemophagocytic lymphohistiocytosis in adults. Cancer 123, 3229–3240 (2017).

    Article  PubMed  Google Scholar 

  36. Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Postema, P.T., den Haan, P., van Hagen, P.M. & van Blankenstein, M. Treatment of colitis in Behçet's disease with thalidomide. Eur. J. Gastroenterol. Hepatol. 8, 929–931 (1996).

    CAS  PubMed  Google Scholar 

  38. Carlesimo, M., Giustini, S., Rossi, A., Bonaccorsi, P. & Calvieri, S. Treatment of cutaneous and pulmonary sarcoidosis with thalidomide. J. Am. Acad. Dermatol. 32, 866–869 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, M. et al. Comparison of lenalidomide in combination with dexamethasone to dexamethasone alone in patients who have received prior thalidomide in relapsed or refractory multiple myeloma. J. Clin. Oncol. 24, 7522 (2006).

    Google Scholar 

  40. Palumbo, A. et al.Thalidomide for treatment of multiple myeloma: 10 years later. Blood 111, 3968–3977 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, F. et al. Changes in the proteomic profile during the differential polarization status of the human monocyte-derived macrophage THP-1 cell line. Proteomics 15, 773–786 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Leukert, N. et al. Calcium-dependent tetramer formation of S100A8 and S100A9 is essential for biological activity. J. Mol. Biol. 359, 961–972 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Vogl, T., Leukert, N., Barczyk, K., Strupat, K. & Roth, J. Biophysical characterization of S100A8 and S100A9 in the absence and presence of bivalent cations. Biochim. Biophys. Acta. 1763, 1298–1306 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Shao, Y. et al. CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos. Nat. Protoc. 9, 2493–2512 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Li, D. et al. Heritable gene targeting in the mouse and rat using a CRISPR–Cas system. Nat. Biotechnol. 31, 681–683 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Bellora, F. et al. M-CSF induces the expression of a membrane-bound form of IL-18 in a subset of human monocytes differentiating in vitro toward macrophages. Eur. J. Immunol. 42, 1618–1626 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Yan, M. et al. IKKα restoration via EZH2 suppression induces nasopharyngeal carcinoma differentiation. Nat. Commun. 5, ncomms4661 (2014).

    Article  CAS  Google Scholar 

  48. Izzo, J.G. et al. Association of activated transcription factor nuclear factor κB with chemoradiation resistance and poor outcome in esophageal carcinoma. J. Clin. Oncol. 24, 748–754 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Huang, H. et al. Long-term outcomes of patients with newly diagnosed extranodal natural killer/T-cell lymphoma treated by etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin regimen: a single-institution experience. Leuk. Lymphoma 52, 1041–1048 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFA0505600-04 to Q.L.), the National Natural Science Foundation of China (81630005, 81130040, and 81573025 to Q.L.; 81502594 to H.W.), the Innovative Research Team in University of Ministry of Education of China (IRT13049 to Q.L.), the Natural Science Foundation of Guangdong (2016A030311038 and 2017A030313608 to Q.L.), the Science and Technology Planning Project of Guangzhou (201604020163 to Q.L.), Fundamental Research Funds for the Central Universities (DUT15QY43 to Y.Y.), the Sun Yat-Sen University Clinical Research 5010 Program (2013011 to H.H.), and the National Natural Science Foundation of China (81773166 to Z.W.). We thank X. Zhu at Sun Yat-sen University Cancer Center (SYSUCC) for providing the luciferase–red fluorescent protein plasmid. We thank J. Shao in SYSUCC for T cell receptor gene rearrangement analysis. We thank H. Li from the Institute of Molecular Biophysics at Florida State University for the helpful comments and discussion on the molecular simulation work. We thank all members of the Liu laboratory for their critical comments and technical support.

Author information

Authors and Affiliations

Authors

Contributions

H.W. organized the project, and H.W., H.M., B.H., and X.L. performed functional studies. Q.C. and S.L. performed the pathological studies. Z.W., Z.L., and M.Y. performed the in vitro studies. D.L. constructed the transgenic mice. Wensheng Liu performed the bioinformatics analysis. S.W. and Y.Y. modeled the 3D structures. K.W.K. participated in critical revision of the manuscript. Y.G., Weiping Liu, Q.T., and H.H. performed surgeries, collected subject samples, and managed subject information and tissue samples. Q.L. led the project and oversaw preparation of the manuscript.

Corresponding authors

Correspondence to Yongliang Yang, Huiqiang Huang or Quentin Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Supplementary Figures 1–20 (PDF 21870 kb)

Life Sciences Reporting Summary (PDF 217 kb)

Supplementary Table 1

Clinicopathological characteristics of 88 patients with ENKTL. (XLSX 21 kb)

Supplementary Table 2

Somatic mutations identified by exome-sequencing in 5 ENKTL patients. (XLSX 13 kb)

Supplementary Table 3

Primer sequences for somatic mutations validation using Sanger sequencing. (XLSX 13 kb)

Supplementary Table 4

Sequenom MassARRAY survey result of 35 validated somatic mutations. (XLSX 19 kb)

Supplementary Table 5

Mutation frequency of 8 recurrent somatic mutations in 88 ENKTL samples. (XLSX 10 kb)

Supplementary Table 6

Primer sequence for survey of previously reported somatic mutations in our cohort using Sanger sequencing. (XLSX 13 kb)

Supplementary Table 7

Different-expressed genes induced by ECSIT V140A mutation in SNK6 and NKYS cells. (XLSX 78 kb)

Supplementary Table 8

Mutant ECSIT interacting proteins identified by liquid chromatography mass spectrometry. (XLSX 9 kb)

Supplementary Table 9

p52 nuclear expression in NK/T-LAHPS patients (at the time of ENKTL diagnosis) revealed by IHC staining. (XLSX 10 kb)

Supplementary Table 10

Disease progression of the 17 NK/T-LAHPS patients and their therapeutic schedules. (XLSX 12 kb)

Supplementary Table 11

Therapeutic schedule after the onset of HPS. (XLSX 11 kb)

Supplementary Table 12

Complete blood count and serum chemistry profile test after the onset of HPS. (XLSX 12 kb)

Supplementary Table 13

Sequenom MassARRAY Assay Design of 35 validated somatic mutations. (XLSX 15 kb)

Supplementary Table 14

Primers for qRT-PCR analysis of 10 NF-κB target genes and the internal control GAPDH. (XLSX 9 kb)

Supplementary Table 15

Primers for qRT-PCR analysis of 6 candidate genes. (XLSX 9 kb)

Supplementary Table 16

Sequences used in generating ECSIT-T419C knock-in mice. (XLSX 9 kb)

Supplementary Table 17

Primer sequences used in ChIP assay. (XLSX 8 kb)

Supplementary Dataset 1

PDB file of the final homology model of the wild type complex (ECSITWT-S100A8/A9-AA) after MD optimization. (TXT 270 kb)

Supplementary Dataset 2

PDB file of the final homology model of the mutant complex (ECSITMU-S100A8/A9-AA) after MD optimization. (TXT 269 kb)

MD simulation on the S100A8/A9-AA complex (MPG 4187 kb)

MD simulation on the ECSITV140A complexed with S100A8/A9-AA (MPG 5069 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, H., Ma, H., Cai, Q. et al. Recurrent ECSIT mutation encoding V140A triggers hyperinflammation and promotes hemophagocytic syndrome in extranodal NK/T cell lymphoma. Nat Med 24, 154–164 (2018). https://doi.org/10.1038/nm.4456

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4456

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer