Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The deubiquitinating enzyme TNFAIP3 mediates inactivation of hepatic ASK1 and ameliorates nonalcoholic steatohepatitis

Abstract

Activation of apoptosis signal-regulating kinase 1 (ASK1) in hepatocytes is a key process in the progression of nonalcoholic steatohepatitis (NASH) and a promising target for treatment of the condition. However, the mechanism underlying ASK1 activation is still unclear, and thus the endogenous regulators of this kinase remain open to be exploited as potential therapeutic targets. In screening for proteins that interact with ASK1 in the context of NASH, we identified the deubiquitinase tumor necrosis factor alpha–induced protein 3 (TNFAIP3) as a key endogenous suppressor of ASK1 activation, and we found that TNFAIP3 directly interacts with and deubiquitinates ASK1 in hepatocytes. Hepatocyte-specific ablation of Tnfaip3 exacerbated nonalcoholic fatty liver disease– and NASH-related phenotypes in mice, including glucose metabolism disorders, lipid accumulation and enhanced inflammation, in an ASK1-dependent manner. In contrast, transgenic or adeno-associated virus–mediated TNFAIP3 gene delivery in the liver in both mouse and nonhuman primate models of NASH substantially blocked the onset and progression of the disease. These results implicate TNFAIP3 as a functionally important endogenous suppressor of ASK1 hyperactivation in the pathogenesis of NASH and identify it as a potential new molecular target for NASH therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of potent suppressors of ASK1 activity.
Figure 2: Deubiquitination of ASK1 by TNFAIP3 inhibits ASK1–p38–JNK1/2 signaling.
Figure 3: Inactivation of ASK1–p38–JNK1/2 signaling by TNFAIP3 inhibits the development of NAFLD.
Figure 4: TNFAIP3 inactivates ASK1 signaling and ameliorates inflammation and apoptosis, thus inhibiting NASH progression.
Figure 5: ASK1 signaling is indispensable for the protective function of TNFAIP3 against hepatic steatosis and inflammation.
Figure 6: Therapeutic effects of TNFAIP3 on insulin resistance and NASH.

Similar content being viewed by others

References

  1. Byrne, C.D. & Targher, G. NAFLD: a multisystem disease. J. Hepatol. 62 (Suppl.), S47–S64 (2015).

    Article  PubMed  Google Scholar 

  2. Michelotti, G.A., Machado, M.V. & Diehl, A.M. NAFLD, NASH and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 10, 656–665 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Villanueva, M.T. Liver disease: conscious uncoupling in NASH. Nat. Rev. Drug Discov. 16, 238–239 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Targher, G., Day, C.P. & Bonora, E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N. Engl. J. Med. 363, 1341–1350 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Czech, M.P. Obesity notches up fatty liver. Nat. Med. 19, 969–971 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Gregor, M.F. & Hotamisligil, G.S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Xie, L. et al. DKK3 expression in hepatocytes defines susceptibility to liver steatosis and obesity. J. Hepatol. 65, 113–124 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, P.X. et al. Targeting CASP8 and FADD-like apoptosis regulator ameliorates nonalcoholic steatohepatitis in mice and nonhuman primates. Nat. Med. 23, 439–449 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Xiang, M. et al. Targeting hepatic TRAF1–ASK1 signaling to improve inflammation, insulin resistance, and hepatic steatosis. J. Hepatol. 64, 1365–1377 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Vernia, S. et al. The PPARα–FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway. Cell Metab. 20, 512–525 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lawan, A. et al. Hepatic mitogen-activated protein kinase phosphatase 1 selectively regulates glucose metabolism and energy homeostasis. Mol. Cell. Biol. 35, 26–40 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Li, P. et al. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nat. Med. 21, 239–247 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sabio, G. et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322, 1539–1543 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin, J.H., Zhang, J.J., Lin, S.L. & Chertow, G.M. Design of a phase 2 clinical trial of an ASK1 inhibitor, GS-4997, in patients with diabetic kidney disease. Nephron 129, 29–33 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Won, M. et al. Novel anti-apoptotic mechanism of A20 through targeting ASK1 to suppress TNF-induced JNK activation. Cell Death Differ. 17, 1830–1841 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Nishida, T., Hattori, K. & Watanabe, K. The regulatory and signaling mechanisms of the ASK family. Adv. Biol. Regul. S2212-4926(17)30119-7 (2017).

  18. Chen, M.B. et al. Activation of AMP-activated protein kinase (AMPK) mediates plumbagin-induced apoptosis and growth inhibition in cultured human colon cancer cells. Cell. Signal. 25, 1993–2002 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Boronkai, A. et al. Potentiation of paclitaxel-induced apoptosis by galectin-13 overexpression via activation of Ask-1–p38-MAP kinase and JNK/SAPK pathways and suppression of Akt and ERK1/2 activation in U-937 human macrophage cells. Eur. J. Cell Biol. 88, 753–763 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Saitoh, M. et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596–2606 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petrvalska, O. et al. Structural insight into the 14-3-3 protein–dependent inhibition of protein kinase ASK1 (apoptosis signal-regulating kinase 1). J. Biol. Chem. 291, 20753–20765 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu, Z. et al. Lys29-linkage of ASK1 by Skp1–Cullin 1–Fbxo21 ubiquitin ligase complex is required for antiviral innate response. eLife 5, e14087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu, T.T. et al. Dimerization and ubiquitin mediated recruitment of A20, a complex deubiquitinating enzyme. Immunity 38, 896–905 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Bosanac, I. et al. Ubiquitin binding to A20 ZnF4 is required for modulation of NF-κB signaling. Mol. Cell 40, 548–557 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Maruyama, H., Kiyono, S., Kondo, T., Sekimoto, T. & Yokosuka, O. Palmitate-induced regulation of PPARγ via PGC1α: a mechanism for lipid accumulation in the liver in nonalcoholic fatty liver disease. Int. J. Med. Sci. 13, 169–178 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Feng, J. et al. miR-21 attenuates lipopolysaccharide-induced lipid accumulation and inflammatory response: potential role in cerebrovascular disease. Lipids Health Dis. 13, 27 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McCommis, K.S. et al. Targeting the mitochondrial pyruvate carrier attenuates fibrosis in a mouse model of nonalcoholic steatohepatitis. Hepatology 65, 1543–1556 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Ye, D. et al. Lipocalin-2 mediates non-alcoholic steatohepatitis by promoting neutrophil–macrophage crosstalk via the induction of CXCR2. J. Hepatol. 65, 988–997 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Nam, H.J. et al. Structure of adeno-associated virus serotype 8, a gene therapy vector. J. Virol. 81, 12260–12271 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tobiume, K. et al. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2, 222–228 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weijman, J.F. et al. Structural basis of autoregulatory scaffolding by apoptosis signal-regulating kinase 1. Proc. Natl. Acad. Sci. USA 114, E2096–E2105 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Geleziunas, R., Xu, W., Takeda, K., Ichijo, H. & Greene, W.C. HIV-1 Nef inhibits ASK1-dependent death signalling providing a potential mechanism for protecting the infected host cell. Nature 410, 834–838 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Matsuzawa, A. et al. ROS-dependent activation of the TRAF6–ASK1–p38 pathway is selectively required for TLR4-mediated innate immunity. Nat. Immunol. 6, 587–592 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Okazaki, T. et al. The ASK family kinases differentially mediate induction of type I interferon and apoptosis during the antiviral response. Sci. Signal. 8, ra78 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Huang, Q. et al. Thioredoxin-2 inhibits mitochondrial reactive oxygen species generation and apoptosis stress kinase-1 activity to maintain cardiac function. Circulation 131, 1082–1097 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, Y. et al. Dickkopf-3 attenuates pressure overload–induced cardiac remodelling. Cardiovasc. Res. 102, 35–45 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hayakawa, Y. et al. Apoptosis signal-regulating kinase 1 and cyclin D1 compose a positive feedback loop contributing to tumor growth in gastric cancer. Proc. Natl. Acad. Sci. USA 108, 780–785 (2011).

    Article  PubMed  Google Scholar 

  39. Stark, M.S. et al. Frequent somatic mutations in MAP3K5 and MAP3K9 in metastatic melanoma identified by exome sequencing. Nat. Genet. 44, 165–169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tobiume, K., Saitoh, M. & Ichijo, H. Activation of apoptosis signal-regulating kinase 1 by the stress-induced activating phosphorylation of pre-formed oligomer. J. Cell. Physiol. 191, 95–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Noguchi, T. et al. Recruitment of tumor necrosis factor receptor–associated factor family proteins to apoptosis signal-regulating kinase 1 signalosome is essential for oxidative stress–induced cell death. J. Biol. Chem. 280, 37033–37040 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. He, Y., Zhang, W., Zhang, R., Zhang, H. & Min, W. SOCS1 inhibits tumor necrosis factor–induced activation of ASK1–JNK inflammatory signaling by mediating ASK1 degradation. J. Biol. Chem. 281, 5559–5566 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Zhao, Y., Conze, D.B., Hanover, J.A. & Ashwell, J.D. Tumor necrosis factor receptor 2 signaling induces selective c-IAP1-dependent ASK1 ubiquitination and terminates mitogen-activated protein kinase signaling. J. Biol. Chem. 282, 7777–7782 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Maruyama, T. et al. Roquin-2 promotes ubiquitin-mediated degradation of ASK1 to regulate stress responses. Sci. Signal. 7, ra8 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, E.G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Onizawa, M. et al. The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis. Nat. Immunol. 16, 618–627 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ma, A. & Malynn, B.A. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat. Rev. Immunol. 12, 774–785 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shembade, N., Ma, A. & Harhaj, E.W. Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327, 1135–1139 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Turer, E.E. et al. Homeostatic MyD88-dependent signals cause lethal inflammation in the absence of A20. J. Exp. Med. 205, 451–464 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boone, D.L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052–1060 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Coornaert, B., Carpentier, I. & Beyaert, R. A20: central gatekeeper in inflammation and immunity. J. Biol. Chem. 284, 8217–8221 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Malynn, B.A. & Ma, A. A20 takes on tumors: tumor suppression by an ubiquitin-editing enzyme. J. Exp. Med. 206, 977–980 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Studer, P. et al. Significant lethality following liver resection in A20 heterozygous knockout mice uncovers a key role for A20 in liver regeneration. Cell Death Differ. 22, 2068–2077 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Catrysse, L. et al. A20 prevents chronic liver inflammation and cancer by protecting hepatocytes from death. Cell Death Dis. 7, e2250 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ai, L. et al. A20 attenuates FFAs-induced lipid accumulation in nonalcoholic steatohepatitis. Int. J. Biol. Sci. 11, 1436–1446 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ramsey, H.E. et al. A20 protects mice from lethal liver ischemia/reperfusion injury by increasing peroxisome proliferator-activated receptor-α expression. Liver Transpl. 15, 1613–1621 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Longo, C.R. et al. A20 protects mice from lethal radical hepatectomy by promoting hepatocyte proliferation via a p21waf1-dependent mechanism. Hepatology 42, 156–164 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Huang, H. et al. Tumor suppressor A20 protects against cardiac hypertrophy and fibrosis by blocking transforming growth factor-beta-activated kinase 1-dependent signaling. Hypertension 56, 232–239 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Li, H.L. et al. Targeted cardiac overexpression of A20 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circulation 115, 1885–1894 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Catrysse, L., Vereecke, L., Beyaert, R. & van Loo, G. A20 in inflammation and autoimmunity. Trends Immunol. 35, 22–31 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Deng, K.Q. et al. Suppressor of IKK is an essential negative regulator of pathological cardiac hypertrophy. Nat. Commun. 7, 11432 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhao, G.N. et al. Tmbim1 is a multivesicular body regulator that protects against non-alcoholic fatty liver disease in mice and monkeys by targeting the lysosomal degradation of Tlr4. Nat. Med. 23, 742–752 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, P.X. et al. Interferon regulatory factor 9 is a key mediator of hepatic ischemia/reperfusion injury. J. Hepatol. 62, 111–120 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Ji, Y.X. et al. The ubiquitin E3 ligase TRAF6 exacerbates pathological cardiac hypertrophy via TAK1-dependent signalling. Nat. Commun. 7, 11267 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brunt, E.M., Kleiner, D.E., Wilson, L.A., Belt, P. & Neuschwander-Tetri, B.A. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology 53, 810–820 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Sun, P. et al. Mindin deficiency protects the liver against ischemia/reperfusion injury. J. Hepatol. 63, 1198–1211 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Wang, P.X. et al. Hepatocyte TRAF3 promotes liver steatosis and systemic insulin resistance through targeting TAK1-dependent signalling. Nat. Commun. 7, 10592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gao, L. et al. Tumor necrosis factor receptor–associated factor 5 (Traf5) acts as an essential negative regulator of hepatic steatosis. J. Hepatol. 65, 125–136 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H.-B. Shu (Medical Research Institute, Wuhan University) for providing ubiquitin and several of its derivative plasmids. We thank Y. Wang (University of California, Los Angeles) for his helpful suggestions regarding this research and for editing the manuscript. This work was supported by grants from the National Science Fund for Distinguished Young Scholars (no. 81425005, H.L.), the Key Project of the National Natural Science Foundation (no. 81330005 and no. 81630011, H.L.), the National Science and Technology Support Project (no. 2014BAI02B01 and no. 2015BAI08B01, H.L.), the National Key Research and Development Program (no. 2013YQ030923-05, H.L.; no. 2016YFF0101500, Z.-G.S.), the National Natural Science Foundation of China (no. 81770053, Z.-G.S.) and the Key Collaborative Project of the National Natural Science Foundation (no. 91639304, H.L. and Z.-G.S.).

Author information

Authors and Affiliations

Authors

Contributions

P.Z., P.-X.W., L.-P.Z. and X.Z. designed and performed experiments, analyzed data and wrote the manuscript; Y.-X.J., X.-J.Z., C.F., Y.-X.L., X.Y. and M.-M.G. performed experiments, analyzed data and provided useful advice regarding the manuscript; Y.Z. performed histology experiments; J.G. constructed the genetically engineered mice used in this study; S.T. established mouse NASH models and performed mouse experiments; X.-Y.Z. performed western blot analysis; X.-L.M., F.L., Z.W. and Z.H. helped design the project and edited the manuscript; Z.-G.S. and H.L. designed experiments, wrote the manuscript and supervised the study.

Corresponding authors

Correspondence to Zhi-Gang She or Hongliang Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures & Tables

Supplementary Figures 1–11 & Supplementary Tables 1–3 (PDF 21087 kb)

Life Sciences Reporting Summary (PDF 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Wang, PX., Zhao, LP. et al. The deubiquitinating enzyme TNFAIP3 mediates inactivation of hepatic ASK1 and ameliorates nonalcoholic steatohepatitis. Nat Med 24, 84–94 (2018). https://doi.org/10.1038/nm.4453

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4453

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing