Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function

Abstract

Thyroid hormone (TH) is critical for the maintenance of cellular homeostasis during stress responses, but its role in lung fibrosis is unknown. Here we found that the activity and expression of iodothyronine deiodinase 2 (DIO2), an enzyme that activates TH, were higher in lungs from patients with idiopathic pulmonary fibrosis than in control individuals and were correlated with disease severity. We also found that Dio2-knockout mice exhibited enhanced bleomycin-induced lung fibrosis. Aerosolized TH delivery increased survival and resolved fibrosis in two models of pulmonary fibrosis in mice (intratracheal bleomycin and inducible TGF-β1). Sobetirome, a TH mimetic, also blunted bleomycin-induced lung fibrosis. After bleomycin-induced injury, TH promoted mitochondrial biogenesis, improved mitochondrial bioenergetics and attenuated mitochondria-regulated apoptosis in alveolar epithelial cells both in vivo and in vitro. TH did not blunt fibrosis in Ppargc1a- or Pink1-knockout mice, suggesting dependence on these pathways. We conclude that the antifibrotic properties of TH are associated with protection of alveolar epithelial cells and restoration of mitochondrial function and that TH may thus represent a potential therapy for pulmonary fibrosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DIO2 levels and activity are higher in the lungs of patients with IPF than in normal-histology controls and its inhibition enhances bleomycin-induced lung fibrosis.
Figure 2: Aerosolized T3 blunts established fibrosis in two mouse models of lung fibrosis.
Figure 3: Thyroid hormone treatment reverses bleomycin-induced mitochondrial abnormalities in alveolar epithelial cells.
Figure 4: Thyroid hormone attenuates mitochondria-regulated apoptosis in lung epithelial cells.
Figure 5: The antifibrotic effects of thyroid hormone are mediated through PGC-1α.
Figure 6: PINK1 is required for the antifibrotic effects of thyroid hormone.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Travis, W.D. et al. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am. J. Respir. Crit. Care Med. 188, 733–748 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sgalla, G., Biffi, A. & Richeldi, L. Idiopathic pulmonary fibrosis: diagnosis, epidemiology and natural history. Respirology 21, 427–437 (2016).

    Article  PubMed  Google Scholar 

  3. Richeldi, L., Collard, H.R. & Jones, M.G. Idiopathic pulmonary fibrosis. Lancet 389, 1941–1952 (2017).

    Article  PubMed  Google Scholar 

  4. Bagnato, G. & Harari, S. Cellular interactions in the pathogenesis of interstitial lung diseases. Eur. Respir. Rev. 24, 102–114 (2015).

    Article  PubMed  Google Scholar 

  5. Kusko, R.L. et al. Integrated genomics reveals convergent transcriptomic networks underlying chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 194, 948–960 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pandit, K.V. & Milosevic, J. MicroRNA regulatory networks in idiopathic pulmonary fibrosis. Biochem. Cell Biol. 93, 129–137 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Thannickal, V.J. Mechanistic links between aging and lung fibrosis. Biogerontology 14, 609–615 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Mora, A.L., Bueno, M. & Rojas, M. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J. Clin. Invest. 127, 405–414 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ryu, C. et al. Extracellular mitochondrial DNA is generated by fibroblasts and predicts death in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. http://dx.doi.org/10.1164/rccm.201612-2480OC (2017).

  10. Xie, N. et al. Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am. J. Respir. Crit. Care Med. 192, 1462–1474 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bueno, M. et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J. Clin. Invest. 125, 521–538 (2015).

    Article  PubMed  Google Scholar 

  12. Bauer, Y. et al. A novel genomic signature with translational significance for human idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 52, 217–231 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Christoffolete, M.A. et al. Mice with targeted disruption of the Dio2 gene have cold-induced overexpression of the uncoupling protein 1 gene but fail to increase brown adipose tissue lipogenesis and adaptive thermogenesis. Diabetes 53, 577–584 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. de Jesus, L.A. et al. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J. Clin. Invest. 108, 1379–1385 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Raghu, G. et al. An official ATS/ERS/JRS/ALAT Clinical Practice Guideline: treatment of idiopathic pulmonary fibrosis. An update of the 2011 Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 192, e3–e19 (2015).

    Article  PubMed  Google Scholar 

  16. Lee, C.G. et al. Early growth response gene 1–mediated apoptosis is essential for transforming growth factor β1–induced pulmonary fibrosis. J. Exp. Med. 200, 377–389 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. El-Sikhry, H.E., Alsaleh, N., Dakarapu, R., Falck, J.R. & Seubert, J.M. Novel roles of epoxyeicosanoids in regulating cardiac mitochondria. PLoS One 11, e0160380 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dörner, T., Egerer, K., Feist, E. & Burmester, G.R. Rheumatoid factor revisited. Curr. Opin. Rheumatol. 16, 246–253 (2004).

    Article  PubMed  Google Scholar 

  19. Van Beeren, H.C. et al. Dronerarone acts as a selective inhibitor of 3,5,3′-triiodothyronine binding to thyroid hormone receptor-α1: in vitro and in vivo evidence. Endocrinology 144, 552–558 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Chiellini, G. et al. A high-affinity subtype-selective agonist ligand for the thyroid hormone receptor. Chem. Biol. 5, 299–306 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Scanlan, T.S. Sobetirome: a case history of bench-to-clinic drug discovery and development. Heart Fail. Rev. 15, 177–182 (2010).

    Article  PubMed  Google Scholar 

  22. Nozaki, N., Shishido, T., Takeishi, Y. & Kubota, I. Modulation of doxorubicin-induced cardiac dysfunction in Toll-like receptor-2–knockout mice. Circulation 110, 2869–2874 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Williams, G.R. & Bassett, J.H. Deiodinases: the balance of thyroid hormone: local control of thyroid hormone action: role of type 2 deiodinase. J. Endocrinol. 209, 261–272 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Barca-Mayo, O. et al. Role of type 2 deiodinase in response to acute lung injury (ALI) in mice. Proc. Natl. Acad. Sci. USA 108, E1321–E1329 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Forini, F. et al. Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis. Endocrinology 155, 4581–4590 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Lu, X. et al. Thyroid hormone inhibits TGFβ1 induced renal tubular epithelial to mesenchymal transition by increasing miR34a expression. Cell. Signal. 25, 1949–1954 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Fliers, E., Bianco, A.C., Langouche, L. & Boelen, A. Thyroid function in critically ill patients. Lancet Diabetes Endocrinol. 3, 816–825 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Friberg, L., Werner, S., Eggertsen, G. & Ahnve, S. Rapid down-regulation of thyroid hormones in acute myocardial infarction: is it cardioprotective in patients with angina? Arch. Intern. Med. 162, 1388–1394 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Han, C. et al. Subclinical hypothyroidism and type 2 diabetes: a systematic review and meta-analysis. PLoS One 10, e0135233 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oldham, J.M. et al. Thyroid disease is prevalent and predicts survival in patients with idiopathic pulmonary fibrosis. Chest 148, 692–700 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brent, G.A. & Hershman, J.M. Thyroxine therapy in patients with severe nonthyroidal illnesses and low serum thyroxine concentration. J. Clin. Endocrinol. Metab. 63, 1–8 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. Cloonan, S.M. & Choi, A.M. Mitochondria in lung disease. J. Clin. Invest. 126, 809–820 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Porter, R.K. et al. Indirect measurement of mitochondrial proton leak and its application. Int. J. Obes. Relat. Metab. Disord. 23 Suppl 6, S12–S18 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Wrutniak-Cabello, C., Casas, F. & Cabello, G. Thyroid hormone action in mitochondria. J. Mol. Endocrinol. 26, 67–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Salvatore, D., Simonides, W.S., Dentice, M., Zavacki, A.M. & Larsen, P.R. Thyroid hormones and skeletal muscle—new insights and potential implications. Nat. Rev. Endocrinol. 10, 206–214 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Austin, S. & St-Pierre, J. PGC1α and mitochondrial metabolism—emerging concepts and relevance in ageing and neurodegenerative disorders. J. Cell Sci. 125, 4963–4971 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Safdar, A. et al. Exercise increases mitochondrial PGC-1α content and promotes nuclear–mitochondrial cross-talk to coordinate mitochondrial biogenesis. J. Biol. Chem. 286, 10605–10617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Araya, J. et al. Insufficient autophagy in idiopathic pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 304, L56–L69 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Mariño, G., Niso-Santano, M., Baehrecke, E.H. & Kroemer, G. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81–94 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oral, O. et al. Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptor-activated cell death. Apoptosis 17, 810–820 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Arena, G. et al. PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage. Cell Death Differ. 20, 920–930 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alavian, K.N. et al. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat. Cell Biol. 13, 1224–1233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Verga Falzacappa, C. et al. T3 preserves ovarian granulosa cells from chemotherapy-induced apoptosis. J. Endocrinol. 215, 281–289 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Lesmana, R. et al. Thyroid hormone stimulation of autophagy is essential for mitochondrial biogenesis and activity in skeletal muscle. Endocrinology 157, 23–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Alonso-Merino, E. et al. Thyroid hormones inhibit TGF-β signaling and attenuate fibrotic responses. Proc. Natl. Acad. Sci. USA 113, E3451–E3460 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Patel, A.S. et al. Autophagy in idiopathic pulmonary fibrosis. PLoS One 7, e41394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bernard, K. et al. NADPH oxidase 4 (Nox4) suppresses mitochondrial biogenesis and bioenergetics in lung fibroblasts via a nuclear factor erythroid-derived 2-like 2 (Nrf2)-dependent pathway. J. Biol. Chem. 292, 3029–3038 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bernard, K. et al. Metabolic reprogramming is required for myofibroblast contractility and differentiation. J. Biol. Chem. 290, 25427–25438 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gu, L., Larson-Casey, J.L. & Carter, A.B. Macrophages utilize the mitochondrial calcium uniporter for profibrotic polarization. FASEB J. 31, 3072–3083 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Larson-Casey, J.L., Deshane, J.S., Ryan, A.J., Thannickal, V.J. & Carter, A.B. Macrophage Akt1 kinase-mediated mitophagy modulates apoptosis resistance and pulmonary fibrosis. Immunity 44, 582–596 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, S. et al. Integrative phenotyping framework (iPF): integrative clustering of multiple omics data identifies novel lung disease subphenotypes. BMC Genomics 16, 924 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Buettner, C., Harney, J.W. & Larsen, P.R. The role of selenocysteine 133 in catalysis by the human type 2 iodothyronine deiodinase. Endocrinology 141, 4606–4612 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Kleiner, S. et al. Development of insulin resistance in mice lacking PGC-1α in adipose tissues. Proc. Natl. Acad. Sci. USA 109, 9635–9640 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Montgomery, R.L. et al. MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol. Med. 6, 1347–1356 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tzouvelekis, A. et al. SH2 domain–containing phosphatase-2 is a novel antifibrotic regulator in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 195, 500–514 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bhargava, M. et al. Triiodo-l-thyronine rapidly stimulates alveolar fluid clearance in normal and hyperoxia-injured lungs. Am. J. Respir. Crit. Care Med. 178, 506–512 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Myllarniemi, M. & Kaarteenaho, R. Pharmacological treatment of idiopathic pulmonary fibrosis—preclinical and clinical studies of pirfenidone, nintedanib, and N-acetylcysteine. Eur. Clin. Respir. J. http://dx.doi.org/10.3402/ecrj.v2.26385 (2015).

  58. Chiellini, G., Nguyen, N.H., Yoshihara, H.A. & Scanlan, T.S. Improved synthesis of the iodine-free thyromimetic GC-1. Bioorg. Med. Chem. Lett. 10, 2607–2611 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Yu, G. et al. Matrix metalloproteinase-19 is a key regulator of lung fibrosis in mice and humans. Am. J. Respir. Crit. Care Med. 186, 752–762 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gereke, M. et al. Flow cytometric isolation of primary murine type II alveolar epithelial cells for functional and molecular studies. J. Vis. Exp. (70), 4322 (2012).

  61. Mannam, P. et al. MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 306, L604–L619 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Herazo-Maya, J.D. et al. Peripheral blood mononuclear cell gene expression profiles predict poor outcome in idiopathic pulmonary fibrosis. Sci. Transl. Med. 5, 205ra136 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was in part supported by US National Institutes of Health (NIH) grants R01HL095397, R01HL127349 (N.K.), R01HL1109233, R01HL125250 (E.L.H.), RO1DK65055 (A.C.B.) and RO1DK52798 (T.S.S.), the Flight Attendant Medical Research Institute (P.J.L.), American Lung Association Award RT 350419, Marie Sklodowska/Curie ERS/EU-RESPIRE 2-8860-2015 grant (A.T.), American Lung Association Award RG-415350 (A.S.) and Pulmonary Fibrosis Foundation (PPF) Albert Rose Established Investigator Award 415245 (G.Y.).

Author information

Authors and Affiliations

Authors

Contributions

G.Y. and A.T. performed most of the experiments with the assistance of R.W., J.D.H.-M., J.P.W.d.C., R.A.e.D., F.A., G.D., N.A., T.W., J.D., Y.G., R.D., G.H.I. and A.C.B. A.S. and P.M. performed the mitochondrial function experiments. M.G. and X.L. performed the electron microscopy experiments and analysis. G.Y., A.T. and N.K. performed the histological analyses with R.J.H. T.S.S. and G.H.I. assisted on the GC-1 animal experiments. G.Y., A.T. and N.K. conceived the project, designed the experiments, and analyzed and interpreted the results. A.T., G.Y. and N.K. drafted and revised the manuscript. E.L.H., P.J.L. and A.C.B. interpreted results and revised the manuscript.

Ethics declarations

Competing interests

A.T., G.Y. and N.K. are inventors on a pending patent with the US Patent and Trademark Office on use of thyroid hormone as an antifibrotic agent entitled “Novel methods of treating or preventing fibrotic lung diseases,” OCR 6368-047162-7029P1 (00219). N.K. consulted for Biogen Idec, Boehringer Ingelheim, Numedii, MMI and Pliant and has an ongoing collaboration with MiRagen, all outside the subject matter of the submitted work. E.L.H. consulted for Boehringer Ingelheim and held grant funding from Sanofi and Promedior, all outside the subject matter of the submitted work. All other authors declare no competing interests.

Supplementary information

Supplementary Table & Figures

Supplementary Table 1 & Supplementary Figures 1–4 (PDF 2849 kb)

Life Sciences Reporting Summary (PDF 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, G., Tzouvelekis, A., Wang, R. et al. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nat Med 24, 39–49 (2018). https://doi.org/10.1038/nm.4447

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4447

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research