IRF3 and type I interferons fuel a fatal response to myocardial infarction


Interferon regulatory factor 3 (IRF3) and type I interferons (IFNs) protect against infections1 and cancer2, but excessive IRF3 activation and type I IFN production cause autoinflammatory conditions such as Aicardi–Goutières syndrome3,4 and STING-associated vasculopathy of infancy (SAVI)3. Myocardial infarction (MI) elicits inflammation5, but the dominant molecular drivers of MI-associated inflammation remain unclear. Here we show that ischemic cell death and uptake of cell debris by macrophages in the heart fuel a fatal response to MI by activating IRF3 and type I IFN production. In mice, single-cell RNA-seq analysis of 4,215 leukocytes isolated from infarcted and non-infarcted hearts showed that MI provokes activation of an IRF3–interferon axis in a distinct population of interferon-inducible cells (IFNICs) that were classified as cardiac macrophages. Mice genetically deficient in cyclic GMP-AMP synthase (cGAS), its adaptor STING, IRF3, or the type I IFN receptor IFNAR exhibited impaired interferon-stimulated gene (ISG) expression and, in the case of mice deficient in IRF3 or IFNAR, improved survival after MI as compared to controls. Interruption of IRF3-dependent signaling resulted in decreased cardiac expression of inflammatory cytokines and chemokines and decreased inflammatory cell infiltration of the heart, as well as in attenuated ventricular dilation and improved cardiac function. Similarly, treatment of mice with an IFNAR-neutralizing antibody after MI ablated the interferon response and improved left ventricular dysfunction and survival. These results identify IRF3 and the type I IFN response as a potential therapeutic target for post-MI cardioprotection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Myocardial infarction activates IRF3-dependent signaling.
Figure 2: Post-phagocytic macrophages initiate IRF3-dependent amplification of inflammation following myocardial infarction.
Figure 3: Self-DNA is the dominant myocardial infarction–induced IRF3-activating DAMP.
Figure 4: Genetic and pharmacological disruption of DNA-induced IRF3 activation and type I interferon signaling protects mice from death and adverse ventricular remodeling following myocardial infarction.

Accession codes

Primary accessions

Gene Expression Omnibus


  1. 1

    Goubau, D., Deddouche, S. & Reis e Sousa, C. Cytosolic sensing of viruses. Immunity 38, 855–869 (2013).

    CAS  PubMed  Google Scholar 

  2. 2

    Woo, S.R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Gall, A. et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36, 120–131 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Swirski, F.K. & Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339, 161–166 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Frangogiannis, N.G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 11, 255–265 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Mann, D.L. Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ. Res. 116, 1254–1268 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Heusch, G. Cardioprotection: chances and challenges of its translation to the clinic. Lancet 381, 166–175 (2013).

    PubMed  Google Scholar 

  9. 9

    Cai, X., Chiu, Y.H. & Chen, Z.J. The cGAS–cGAMP–STING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54, 289–296 (2014).

    CAS  PubMed  Google Scholar 

  10. 10

    Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z.J. Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    CAS  PubMed  Google Scholar 

  11. 11

    Wu, J. et al. Cyclic GMP–AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    CAS  PubMed  Google Scholar 

  12. 12

    Ishikawa, H., Ma, Z. & Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Fitzgerald, K.A. et al. IKKɛ and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    CAS  PubMed  Google Scholar 

  14. 14

    West, A.P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).

    PubMed  PubMed Central  Google Scholar 

  15. 15

    Gao, D. et al. Activation of cyclic GMP–AMP synthase by self-DNA causes autoimmune diseases. Proc. Natl. Acad. Sci. USA 112, E5699–E5705 (2015).

    CAS  PubMed  Google Scholar 

  16. 16

    Yoshida, H., Okabe, Y., Kawane, K., Fukuyama, H. & Nagata, S. Lethal anemia caused by interferon-β produced in mouse embryos carrying undigested DNA. Nat. Immunol. 6, 49–56 (2005).

    CAS  PubMed  Google Scholar 

  17. 17

    Andersen, J., VanScoy, S., Cheng, T.F., Gomez, D. & Reich, N.C. IRF-3-dependent and augmented target genes during viral infection. Genes Immun. 9, 168–175 (2008).

    CAS  PubMed  Google Scholar 

  18. 18

    Grandvaux, N. et al. Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J. Virol. 76, 5532–5539 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Kühn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    PubMed  Google Scholar 

  20. 20

    Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40, 91–104 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015).

    PubMed  Google Scholar 

  22. 22

    Takeda, K. & Akira, S. TLR signaling pathways. Semin. Immunol. 16, 3–9 (2004).

    CAS  PubMed  Google Scholar 

  23. 23

    Yoneyama, M. & Fujita, T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol. Rev. 227, 54–65 (2009).

    CAS  PubMed  Google Scholar 

  24. 24

    Sauer, J.D. et al. The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeriamonocytogenes and cyclic dinucleotides. Infect. Immun. 79, 688–694 (2011).

    CAS  PubMed  Google Scholar 

  25. 25

    Manzanillo, P.S., Shiloh, M.U., Portnoy, D.A. & Cox, J.S. Mycobacteriumtuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11, 469–480 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Hasan, M. et al. Trex1 regulates lysosomal biogenesis and interferon-independent activation of antiviral genes. Nat. Immunol. 14, 61–71 (2013).

    CAS  PubMed  Google Scholar 

  27. 27

    Essers, M.A. et al. IFNα activates dormant haematopoietic stem cells in vivo. Nature 458, 904–908 (2009).

    CAS  PubMed  Google Scholar 

  28. 28

    Heymans, S. et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat. Med. 5, 1135–1142 (1999).

    CAS  PubMed  Google Scholar 

  29. 29

    Corrales, L. & Gajewski, T.F. Molecular pathways: targeting the stimulator of interferon genes (STING) in the immunotherapy of cancer. Clin. Cancer Res. 21, 4774–4779 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Fu, J. et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med. 7, 283ra52 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. 31

    Hanson, M.C. et al. Nanoparticulate STING agonists are potent lymph node–targeted vaccine adjuvants. J. Clin. Invest. 125, 2532–2546 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. 32

    Furie, R. et al. Anifrolumab, an anti-interferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheumatol. 69, 376–386 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Khamashta, M. et al. Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. 75, 1909–1916 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Goldberg, A. et al. Dose-escalation of human anti-interferon-α receptor monoclonal antibody MEDI-546 in subjects with systemic sclerosis: a phase 1, multicenter, open label study. Arthritis Res. Ther. 16, R57 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. 35

    Muzumdar, M.D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    CAS  PubMed  Google Scholar 

  36. 36

    Sun, Q. et al. The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24, 633–642 (2006).

    CAS  PubMed  Google Scholar 

  37. 37

    Hoebe, K. et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743–748 (2003).

    CAS  PubMed  Google Scholar 

  38. 38

    Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity 13, 539–548 (2000).

    CAS  PubMed  Google Scholar 

  39. 39

    Kamran, P. et al. Parabiosis in mice: a detailed protocol. J. Vis. Exp. (80), e50556 (2013).

    Google Scholar 

  40. 40

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  Google Scholar 

  41. 41

    Anders, S., Pyl, P.T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS  PubMed  Google Scholar 

  42. 42

    Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Anders, S. et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat. Protoc. 8, 1765–1786 (2013).

    PubMed  Google Scholar 

  44. 44

    Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    CAS  Google Scholar 

  45. 45

    Huang, W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Google Scholar 

  46. 46

    Ahn, J., Gutman, D., Saijo, S. & Barber, G.N. STING manifests self DNA–dependent inflammatory disease. Proc. Natl. Acad. Sci. USA 109, 19386–19391 (2012).

    CAS  PubMed  Google Scholar 

  47. 47

    Schoggins, J.W. et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505, 691–695 (2014).

    CAS  PubMed  Google Scholar 

  48. 48

    Zilionis, R. et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat. Protoc. 12, 44–73 (2017).

    CAS  PubMed  Google Scholar 

  49. 49

    Klein, A.M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Satija, R., Farrell, J.A., Gennert, D., Schier, A.F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Aguirre, A.D., Vinegoni, C., Sebas, M. & Weissleder, R. Intravital imaging of cardiac function at the single-cell level. Proc. Natl. Acad. Sci. USA 111, 11257–11262 (2014).

    CAS  PubMed  Google Scholar 

  52. 52

    Lee, S. et al. Real-time in vivo imaging of the beating mouse heart at microscopic resolution. Nat. Commun. 3, 1054 (2012).

    PubMed  PubMed Central  Google Scholar 

Download references


We thank T. Taniguchi (University of Tokyo) and M. Diamond (Washington University School of Medicine) for their gift of the Irf3−/− mice; P. Dutta, H. Sager, M. Hulsman, G. Courties, R. Giedt, and K. Yang for helpful discussions and technical assistance; B. Tricot for technical assistance with cardiac MRI as part of the Molecular Imaging Program core; and the Harvard Stem Cell Institute Flow Cytometry Core, the Massachusetts General Hospital NextGen Sequencing Core, the National Mouse Metabolic Phenotyping Center at the University of Massachusetts funded by US NIH grant 2U2C-DK093000, and the Single-Cell Core at Harvard Medical School. The work was funded in part by NIH-NHLBI grant T32HL007604, the Harvard Medical School LaDue Fellowship, and AHA17IRG33410543 and by NIH-NHLBI grants 1K99HL129168 and R00HL129168 (K.R.K.); AHA14FTF20380185 (A.D.A.); AHA16FTF29630016 and the Yeatts Fund for Innovative Research (J.D.R.); AHA16POST27030088 and Deutsche Herzstiftung S/05/12 (Y.-X.Y.); grant R01HL117829 (M.N.); grant NIH-R01 HL080472 and the RRM Charitable Fund (P.L.); and grant 5R01HL122208 (R.W.).

Author information




K.R.K. and A.D.A. designed and performed the experiments, analyzed the data, and wrote the manuscript; Y.-X.Y. designed and performed experiments and analyzed data; M.K. performed MI on WT, Ifnar−/−, and cGAS−/− mice with T.P.F.; Y.S. performed MI on WT mice and all other mouse strains; A.S. and R.I.S. performed bioinformatics analysis; Y.I. performed histological analysis; R.P.N. performed biomolecular analysis; J.D.R. performed echocardiography and data analysis, R.H.K. performed confocal imaging, and S.P.A. performed bone marrow–derived macrophage experiments; T.M., K.A.F., and P.L. provided guidance on experimental design; and M.N. and R.W. designed experiments, analyzed data, and revised the manuscript. All authors reviewed results and commented on the manuscript.

Corresponding author

Correspondence to Kevin R King.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Tables

Supplementary Figures 1–12 and Supplementary Tables 1–7 (PDF 43710 kb)

Life Sciences Reporting Summary (PDF 160 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

King, K., Aguirre, A., Ye, Y. et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat Med 23, 1481–1487 (2017).

Download citation

Further reading


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing