Sympathetic neuron–associated macrophages contribute to obesity by importing and metabolizing norepinephrine

Abstract

The cellular mechanism(s) linking macrophages to norepinephrine (NE)-mediated regulation of thermogenesis have been a topic of debate. Here we identify sympathetic neuron–associated macrophages (SAMs) as a population of cells that mediate clearance of NE via expression of solute carrier family 6 member 2 (SLC6A2), an NE transporter, and monoamine oxidase A (MAOA), a degradation enzyme. Optogenetic activation of the sympathetic nervous system (SNS) upregulates NE uptake by SAMs and shifts the SAM profile to a more proinflammatory state. NE uptake by SAMs is prevented by genetic deletion of Slc6a2 or inhibition of the encoded transporter. We also observed an increased proportion of SAMs in the SNS of two mouse models of obesity. Genetic ablation of Slc6a2 in SAMs increases brown adipose tissue (BAT) content, causes browning of white fat, increases thermogenesis, and leads to substantial and sustained weight loss in obese mice. We further show that this pathway is conserved, as human sympathetic ganglia also contain SAMs expressing the analogous molecular machinery for NE clearance, which thus constitutes a potential target for obesity treatment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Sympathetic neuron–associated Cx3cr1-GFP+ cells exhibit differentiated morphology for specific association with SNS neurons.
Figure 2: SAMs highly express macrophage-associated markers and possess the machinery for uptake and degradation of norepinephrine.
Figure 3: SAMs import and metabolize norepinephrine via SLC6A2 and MAOA, respectively, to regulate extracellular norepinephrine availability.
Figure 4: Obesity-induced accumulation of SAMs.
Figure 5: Loss of Slc6a2 function in SAMs rescues the thermogenic capacity of ob/ob mice.
Figure 6: SAMs in the human sympathetic nervous system.

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. 1

    Zeng, W. et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 163, 84–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. 2

    Mathis, D. Immunological goings-on in visceral adipose tissue. Cell Metab. 17, 851–859 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Nguyen, K.D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Fischer, K. et al. Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nat. Med. 23, 623–630 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Spadaro, O. et al. IGF1 shapes macrophage activation in response to immunometabolic challenge. Cell Rep. 19, 225–234 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Reitman, M.L. How does fat transition from white to beige? Cell Metab. 26, 14–16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Anlauf, E. & Derouiche, A. Glutamine synthetase as an astrocytic marker: its cell type and vesicle localization. Front. Endocrinol. (Lausanne) 4, 144 (2013).

    Article  Google Scholar 

  9. 9

    Bignami, A., Eng, L.F., Dahl, D. & Uyeda, C.T. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 43, 429–435 (1972).

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Chaudhry, F.A. et al. Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15, 711–720 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Jessen, K.R. & Mirsky, R. The origin and development of glial cells in peripheral nerves. Nat. Rev. Neurosci. 6, 671–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Ludwin, S.K., Kosek, J.C. & Eng, L.F. The topographical distribution of S-100 and GFA proteins in the adult rat brain: an immunohistochemical study using horseradish peroxidase–labelled antibodies. J. Comp. Neurol. 165, 197–207 (1976).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Mearow, K.M., Mill, J.F. & Vitkovic, L. The ontogeny and localization of glutamine synthetase gene expression in rat brain. Brain Res. Mol. Brain Res. 6, 223–232 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Raff, M.C. et al. Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture. Nature 274, 813–816 (1978).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Regan, M.R. et al. Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J. Neurosci. 27, 6607–6619 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Rusnakova, V. et al. Heterogeneity of astrocytes: from development to injury—single cell gene expression. PLoS One 8, e69734 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Sensenbrenner, M., Lucas, M. & Deloulme, J.C. Expression of two neuronal markers, growth-associated protein 43 and neuron-specific enolase, in rat glial cells. J. Mol. Med. (Berl.) 75, 653–663 (1997).

    Article  CAS  Google Scholar 

  18. 18

    Buttgereit, A. et al. Sall1 is a transcriptional regulator defining microglia identity and function. Nat. Immunol. 17, 1397–1406 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Wentworth, J.M. et al. Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 59, 1648–1656 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Amano, S.U. et al. Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab. 19, 162–171 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Wolf, Y. et al. Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nat. Immunol. 18, 665–674 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Gosselin, D. et al. An environment-dependent transcriptional network specifies human microglia identity. Science 356, eaal3222 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Clausen, B.E., Burkhardt, C., Reith, W., Renkawitz, R. & Förster, I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 8, 265–277 (1999).

    Article  CAS  Google Scholar 

  24. 24

    Merad, M. et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3, 1135–1141 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Shirey-Rice, J.K. et al. Norepinephrine transporter variant A457P knock-in mice display key features of human postural orthostatic tachycardia syndrome. Dis. Model. Mech. 6, 1001–1011 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Aderem, A. & Underhill, D.M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593–623 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Stjärne, L. Basic mechanisms and local modulation of nerve impulse–induced secretion of neurotransmitters from individual sympathetic nerve varicosities. Rev. Physiol. Biochem. Pharmacol. 112, 1–137 (1989).

    Article  PubMed  Google Scholar 

  28. 28

    Schroeder, C. & Jordan, J. Norepinephrine transporter function and human cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 303, H1273–H1282 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. 29

    Filiano, A.J. et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535, 425–429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Galle-Treger, L. et al. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity. Nat. Commun. 7, 13202 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Ibiza, S. et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 535, 440–443 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Kipnis, J. Multifaceted interactions between adaptive immunity and the central nervous system. Science 353, 766–771 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Gabanyi, I. et al. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164, 378–391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Gautier, E.L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118–1128 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Okabe, Y. & Medzhitov, R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157, 832–844 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Crotti, A. & Ransohoff, R.M. Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling. Immunity 44, 505–515 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Prinz, M. & Priller, J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci. 15, 300–312 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Kong, Y., Ruan, L., Qian, L., Liu, X. & Le, Y. Norepinephrine promotes microglia to uptake and degrade amyloid β peptide through upregulation of mouse formyl peptide receptor 2 and induction of insulin-degrading enzyme. J. Neurosci. 30, 11848–11857 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Kettenmann, H. & Ransom, B.R. Neuroglia (Oxford University Press, 2013).

  42. 42

    Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    Article  CAS  Google Scholar 

  43. 43

    Hanani, M. Satellite glial cells in sensory ganglia: from form to function. Brain Res. Brain Res. Rev. 48, 457–476 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Hanani, M. Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function. Brain Res. Rev. 64, 304–327 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Camell, C.D. et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature http://dx.doi.org/10.1038/nature24022 (2017).

  46. 46

    Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).

    Article  CAS  Google Scholar 

  47. 47

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Unit for Imaging and Cytometry at the Instituto Gulbenkian de Ciência (IGC) for assistance with flow cytometry, cell sorting, and multiphoton microscopy. We also want to thank the Antibody Service at the IGC for the antibodies produced in house and the Histopathology facility at the IGC for tissue processing and histological assessment. This work was supported by the Fundação para a Ciéncia e Tecnologia (FCT), the European Molecular Biology Organization (EMBO), the Human Frontier Science Program (HFSP), Maratona da Saúde, and the US National Institutes of Health (NIH). R.M.P. was supported by FCT (SFRH/BD/88454/2012), J.S.S. was supported by the American Heart Association (16PRE30980030) and a training grant (T32DK007541), B.A.A. was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and N.M.-S. was supported by Xunta de Galicia (ED481B 2016/168-0). We thank M. Aouadi for helpful discussions.

Author information

Affiliations

Authors

Contributions

A.I.D. conceptualized the study. R.M.P. performed two-photon and confocal microscopy. E.S. and R.M.P. performed flow cytometry. J.S.S. and R.M.P. performed low-input RNA-seq. V.M.L., J.S.S., and R.M.P. analyzed the RNA-seq data. M.I., A.L.S., S.A., and E.T. performed electron microscopy. E.S., R.M.P., N.M.S., I. Mahú, B.A.A., and C.M.L. performed functional tests. N.K., I. Morris, R.M., and V.G. performed related mouse husbandry and genotyping. F.T. and M.V. processed human ganglia. M.K.H. provided the Slc6a2−/− mice. N.J.S. developed the low-input RNA-seq protocols. A.I.D., C.K.G., and R.M.P. wrote the original draft of the manuscript. A.I.D., C.K.G., R.M.P., and C.M.L. reviewed and edited the final version of the manuscript.

Corresponding author

Correspondence to Ana I Domingos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Table 1 (PDF 20527 kb)

Life Sciences Reporting Summary (PDF 283 kb)

In vivo visualization of SAMs in the neuro-adipose connection.

Intra-vital multi-photon visualization of a neuro-adipose connection in the inguinal fat pad of a live Cx3cr1GFP/+ mouse; LipidTOX (blue) labels adipocytes. Images are representative of 3 similar experiments. (MPG 192 kb)

In vivo visualization of ATMs in the subcutaneous adipose tissue

Intra-vital multi-photon visualization of the inguinal fat pad of a live Cx3cr1GFP/+ mouse; LipidTOX (blue) labels adipocytes. Images are representative of 3 similar experiments. (MPG 56 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pirzgalska, R., Seixas, E., Seidman, J. et al. Sympathetic neuron–associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat Med 23, 1309–1318 (2017). https://doi.org/10.1038/nm.4422

Download citation

Further reading