Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Targeting glioma stem cells through combined BMI1 and EZH2 inhibition

Abstract

Glioblastomas are lethal cancers defined by angiogenesis and pseudopalisading necrosis. Here, we demonstrate that these histological features are associated with distinct transcriptional programs, with vascular regions showing a proneural profile, and hypoxic regions showing a mesenchymal pattern. As these regions harbor glioma stem cells (GSCs), we investigated the epigenetic regulation of these two niches. Proneural, perivascular GSCs activated EZH2, whereas mesenchymal GSCs in hypoxic regions expressed BMI1 protein, which promoted cellular survival under stress due to downregulation of the E3 ligase RNF144A. Using both genetic and pharmacologic inhibition, we found that proneural GSCs are preferentially sensitive to EZH2 disruption, whereas mesenchymal GSCs are more sensitive to BMI1 inhibition. Given that glioblastomas contain both proneural and mesenchymal GSCs, combined EZH2 and BMI1 targeting proved more effective than either agent alone both in culture and in vivo, suggesting that strategies that simultaneously target multiple epigenetic regulators within glioblastomas may be effective in overcoming therapy resistance caused by intratumoral heterogeneity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomical distribution of transcriptional profiles in glioblastoma.
Figure 2: Epigenetic GSC signatures in multiregional primary specimens.
Figure 3: Differential PRC function in glioblastoma subgroups.
Figure 4: Differential efficacy of BMI1 and EZH2 inhibitors against glioblastoma subgroups.
Figure 5: In vivo therapeutic efficacy of combined pharmacological inhibition of BMI1 and EZH2 on subtype-mixed glioblastoma model.

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Wen, P.Y. & Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 359, 492–507 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Singh, S.K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Galli, R. et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011–7021 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Jin, X. et al. Blockade of EGFR signaling promotes glioma stem-like cell invasiveness by abolishing ID3-mediated inhibition of p27KIP1 and MMP3 expression. Cancer Lett. 328, 235–242 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Bao, S. et al. Stem cell–like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66, 7843–7848 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Li, Z. et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15, 501–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Hjelmeland, A.B. et al. Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ. 18, 829–840 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Flavahan, W.A. et al. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat. Neurosci. 16, 1373–1382 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Verhaak, R.G.W. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oh, Y.T. et al. Translational validation of personalized treatment strategy based on genetic characteristics of glioblastoma. PLoS One 9, e103327 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Patel, A.P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meyer, M. et al. Single cell–derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc. Natl. Acad. Sci. USA 112, 851–856 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Halliday, J. et al. In vivo radiation response of proneural glioma characterized by protective p53 transcriptional program and proneural–mesenchymal shift. Proc. Natl. Acad. Sci. USA 111, 5248–5253 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bhat, K.P.L. et al. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell 24, 331–346 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Mao, P. et al. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc. Natl. Acad. Sci. USA 110, 8644–8649 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Joo, K.M. et al. Patient-specific orthotopic glioblastoma xenograft models recapitulate the histopathology and biology of human glioblastomas in situ. Cell Rep. 3, 260–273 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Hägerstrand, D. et al. Identification of a SOX2-dependent subset of tumor- and sphere-forming glioblastoma cells with a distinct tyrosine kinase inhibitor sensitivity profile. Neuro Oncol. 13, 1178–1191 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park, T.S. et al. Vascular progenitors from cord blood–derived iPSC possess augmented capacity for regenerating ischemic retinal vasculature. Circulation 129, 359–372 (2014).

    Article  PubMed  Google Scholar 

  21. Marotta, D. et al. In vivo profiling of hypoxic gene expression in gliomas using the hypoxia marker EF5 and laser-capture microdissection. Cancer Res. 71, 779–789 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gynther, M. et al. Large neutral amino acid transporter enables brain drug delivery via prodrugs. J. Med. Chem. 51, 932–936 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Masouyé, I. et al. Endothelial cells of the human microvasculature express epidermal fatty acid–binding protein. Circ. Res. 81, 297–303 (1997).

    Article  PubMed  Google Scholar 

  24. Graeber, T.G. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Begg, A.C., Stewart, F.A. & Vens, C. Strategies to improve radiotherapy with targeted drugs. Nat. Rev. Cancer 11, 239–253 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Tavares, L. et al. RYBP–PRC1 complexes mediate H2A ubiquitylation at Polycomb target sites independently of PRC2 and H3K27me3. Cell 148, 664–678 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Son, M.J., Woolard, K., Nam, D.-H., Lee, J. & Fine, H.A. SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4, 440–452 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Kamminga, L.M. et al. The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 107, 2170–2179 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Douglas, D. et al. BMI-1 promotes Ewing sarcoma tumorigenicity independent of CDKN2A repression. Cancer Res. 68, 6507–6515 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu, C. et al. Regulation of tumor angiogenesis by EZH2. Cancer Cell 18, 185–197 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ho, S.-R., Mahanic, C.S., Lee, Y.-J. & Lin, W.-C. RNF144A, an E3 ubiquitin ligase for DNA-PKcs, promotes apoptosis during DNA damage. Proc. Natl. Acad. Sci. USA 111, E2646–E2655 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, P. et al. ABCB1 and ABCG2 restrict the brain penetration of a panel of novel EZH2-Inhibitors. Int. J. Cancer 137, 2007–2018 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Piccirillo, S.G.M. et al. Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene 28, 1807–1811 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Segerman, A. et al. Clonal variation in drug and radiation response among glioma-initiating cells is linked to proneural–mesenchymal transition. Cell Rep. 17, 2994–3009 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Jung, J. et al. Nicotinamide metabolism regulates glioblastoma stem cell maintenance. JCI Insight 2, 90019 (2017).

    Article  PubMed  Google Scholar 

  37. Gilbertson, R.J. & Rich, J.N. Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nat. Rev. Cancer 7, 733–736 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Brennan, C.W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Turcan, S. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479–483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rohle, D. et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340, 626–630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chan, K.-M. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev. 27, 985–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Mazor, T. et al. DNA methylation and somatic mutations converge on the cell cycle and define similar evolutionary histories in brain tumors. Cancer Cell 28, 307–317 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bruggeman, S.W.M. et al. Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell 12, 328–341 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Abdouh, M. et al. BMI1 sustains human glioblastoma multiforme stem cell renewal. J. Neurosci. 29, 8884–8896 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Godlewski, J. et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 68, 9125–9130 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Venugopal, C. et al. Bmi1 marks intermediate precursors during differentiation of human brain tumor initiating cells. Stem Cell Res. 8, 141–153 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Gargiulo, G. et al. In vivo RNAi screen for BMI1 targets identifies TGF-β/BMP-ER stress pathways as key regulators of neural- and malignant glioma-stem cell homeostasis. Cancer Cell 23, 660–676 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Kreso, A. et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat. Med. 20, 29–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Lee, J. et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 13, 69–80 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Suvà, M.-L. et al. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res. 69, 9211–9218 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Kim, E. et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 23, 839–852 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fan, T.-Y. et al. Inhibition of EZH2 reverses chemotherapeutic drug TMZ chemosensitivity in glioblastoma. Int. J. Clin. Exp. Pathol. 7, 6662–6670 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mohammad, F. et al. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat. Med. 23, 483–492 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Piunti, A. et al. Therapeutic targeting of Polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat. Med. 23, 493–500 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Facchino, S., Abdouh, M., Chatoo, W. & Bernier, G. BMI1 confers radioresistance to normal and cancerous neural stem cells through recruitment of the DNA damage response machinery. J. Neurosci. 30, 10096–10111 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, Z. et al. Combined aberrant expression of Bmi1 and EZH2 is predictive of poor prognosis in glioma patients. J. Neurol. Sci. 335, 191–196 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, Q. et al. Tumor evolution of glioma intrinsic gene expression subtype associates with immunological changes in the microenvironment. Preprint at bioRxiv http://dx.doi.org/10.1101/052076 (2016).

Download references

Acknowledgements

We thank PTC Therapeutics for providing PTC209 and PTC596, as well as performing measurement of drug levels. We thank E.P. Sulman (MD Anderson Cancer Center) and A.W. Boyd (Queensland Institute of Medical Research) for subtype-characterized GSCs (PN11, PN23, PN-JK2, PN-MMK1, MES20, MES28 and MES-MN1). We would like to thank N. DeWitt for editorial assistance, as well as the Cleveland Clinic Lerner Research Institute imaging core and proteomics core service teams. We also thank members of J.N.R.'s lab for input about the manuscript. Finally, we would like to thank our funding sources: the National Institutes of Health grants CA203101 (L.K.); CA183510 (T.E.M.); CA217065 (R.C.G.); CA217066 (B.C.P.); CA043703 (J.S.B.-S.); CA169117, CA184090, NS091080 and NS099175 (S.B.); CA197718, CA154130, CA169117, CA171652, NS087913 and NS089272 (J.N.R.); the Peter D. Cristal Chair, the Kimble Family Foundation, the Ferry Foundation, the Jerry Kaufman GBM Research Fund, and CA217956 (A.E.S.); the General Program of the National Natural Science Foundation of China (81572891) (X.J.); Canadian Institutes of Health Research Banting Fellowship (S.C.M.).

Author information

Authors and Affiliations

Authors

Contributions

X.J. and J.N.R. designed the overall experiments, analyzed data, and wrote the manuscript. X.J., L.J.Y.K., L.C.W., T.S., S.C.M., T.E.M., Q.W., P.H., X.W., C.L.V., and Q.Z. performed cell culture and/or animal experiments. X.J., L.J.Y.K., B.C.P., R.C.G., and S.C.M. performed bioinformatics analysis of published expression data sets. J.S.B.-S., S.B., and A.E.S. provided intellectual input and patient tissues. All authors provided scientific input, edited and approved the final manuscript.

Corresponding authors

Correspondence to Andrew E Sloan or Jeremy N Rich.

Ethics declarations

Competing interests

J.N.R. received an honorarium from PTC Therapeutics as an advisory board member.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–24 and Supplementary Tables 2–3 (PDF 22677 kb)

Life Sciences Reporting Summary (PDF 161 kb)

Supplementary Dataset

Supplementary Table 1 (XLSX 1553 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Kim, L., Wu, Q. et al. Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nat Med 23, 1352–1361 (2017). https://doi.org/10.1038/nm.4415

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4415

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer