Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cancer stem cells revisited

Abstract

The cancer stem cell (CSC) concept was proposed four decades ago, and states that tumor growth, analogous to the renewal of healthy tissues, is fueled by small numbers of dedicated stem cells. It has gradually become clear that many tumors harbor CSCs in dedicated niches, and yet their identification and eradication has not been as obvious as was initially hoped. Recently developed lineage-tracing and cell-ablation strategies have provided insights into CSC plasticity, quiescence, renewal, and therapeutic response. Here we discuss new developments in the CSC field in relationship to changing insights into how normal stem cells maintain healthy tissues. Expectations in the field have become more realistic, and now, the first successes of therapies based on the CSC concept are emerging.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Emerging concepts in stem cell and CSC (stem cell/CSC) biology.
Figure 2: Consequences of anti-CSCs therapies.

References

  1. 1

    Clevers, H. The intestinal crypt, a prototype stem cell compartment. Cell 154, 274–284 (2013).

    CAS  PubMed  Article  Google Scholar 

  2. 2

    Doulatov, S., Notta, F., Laurenti, E. & Dick, J.E. Hematopoiesis: a human perspective. Cell Stem Cell 10, 120–136 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Uckun, F.M. et al. Leukemic cell growth in SCID mice as a predictor of relapse in high-risk B-lineage acute lymphoblastic leukemia. Blood 85, 873–878 (1995).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Bonnet, D. & Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J. & Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100, 3983–3988 (2003).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    O'Brien, C.A., Pollett, A., Gallinger, S. & Dick, J.E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8

    Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9

    Dalerba, P. et al. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl. Acad. Sci. USA 104, 10158–10163 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10

    Singh, S.K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Driessens, G., Beck, B., Caauwe, A., Simons, B.D. & Blanpain, C. Defining the mode of tumour growth by clonal analysis. Nature 488, 527–530 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Schepers, A.G. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337, 730–735 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Kozar, S. et al. Continuous clonal labeling reveals small numbers of functional stem cells in intestinal crypts and adenomas. Cell Stem Cell 13, 626–633 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    Zomer, A. et al. Intravital imaging of cancer stem cell plasticity in mammary tumors. Stem Cells 31, 602–606 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15

    Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522–526 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Oshimori, N., Oristian, D. & Fuchs, E. TGF-b promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell 160, 963–976 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Clevers, H. STEM CELLS. What is an adult stem cell? Science 350, 1319–1320 (2015).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Clevers, H. The cancer stem cell: premises, promises and challenges. Nat. Med. 17, 313–319 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19

    Collins, A.T., Berry, P.A., Hyde, C., Stower, M.J. & Maitland, N.J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65, 10946–10951 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res. 67, 1030–1037 (2007).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Zhang, S. et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 68, 4311–4320 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22

    Eramo, A. et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 15, 504–514 (2008).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Nassar, D. & Blanpain, C. Cancer stem cells: basic concepts and therapeutic implications. Annu. Rev. Pathol. 11, 47–76 (2016).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Meacham, C.E. & Morrison, S.J. Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Mascré, G. et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489, 257–262 (2012).

    PubMed  Article  CAS  Google Scholar 

  26. 26

    Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature 446, 185–189 (2007).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Cortina, C. et al. A genome editing approach to study cancer stem cells in human tumors. EMBO Mol. Med. 9, 869–879 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Shimokawa, M. et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature 545, 187–192 (2017).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Merlos-Suárez, A. et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8, 511–524 (2011).

    PubMed  Article  CAS  Google Scholar 

  31. 31

    Dalerba, P. et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat. Biotechnol. 29, 1120–1127 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Barker, N., et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Barker, N. et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Doupé, D.P., Klein, A.M., Simons, B.D. & Jones, P.H. The ordered architecture of murine ear epidermis is maintained by progenitor cells with random fate. Dev. Cell 18, 317–323 (2010).

    PubMed  Article  CAS  Google Scholar 

  35. 35

    Leushacke, M., Ng, A., Galle, J., Loeffler, M. & Barker, N. Lgr5+ gastric stem cells divide symmetrically to effect epithelial homeostasis in the pylorus. Cell Reports 5, 349–356 (2013).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Snippert, H.J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Lopez-Garcia, C., Klein, A.M., Simons, B.D. & Winton, D.J. Intestinal stem cell replacement follows a pattern of neutral drift. Science 330, 822–825 (2010).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Stanger, B.Z. Cellular homeostasis and repair in the mammalian liver. Annu. Rev. Physiol. 77, 179–200 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Brack, A.S. & Rando, T.A. Tissue-specific stem cells: lessons from the skeletal muscle satellite cell. Cell Stem Cell 10, 504–514 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Hsu, Y.C., Li, L. & Fuchs, E. Emerging interactions between skin stem cells and their niches. Nat. Med. 20, 847–856 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478, 255–259 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    van Es, J.H. et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat. Cell Biol. 14, 1099–1104 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    Buczacki, S.J. et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495, 65–69 (2013).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Tetteh, P.W. et al. Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell 18, 203–213 (2016).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Rock, J.R. et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl. Acad. Sci. USA 106, 12771–12775 (2009).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Tata, P.R. et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 503, 218–223 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A. & Humphreys, B.D. Differentiated kidney epithelial cells repair injured proximal tubule. Proc. Natl. Acad. Sci. USA 111, 1527–1532 (2014).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Ball, C.R. et al. Succession of transiently active tumor-initiating cell clones in human pancreatic cancer xenografts. EMBO Mol. Med. 9, 918–932 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Gupta, P.B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    van de Wetering, M. et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25–38 (2013).

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Brabletz, T. et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc. Natl. Acad. Sci. USA 98, 10356–10361 (2001).

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Vermeulen, L. et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol. 12, 468–476 (2010).

    CAS  Article  Google Scholar 

  56. 56

    de Sousa e Melo, F. et al. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature 543, 676–680 (2017).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Suvà, M.L. et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157, 580–594 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. 58

    Batlle, E. et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. 2, 84–89 (2000).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Cano, A. et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2, 76–83 (2000).

    CAS  PubMed  Article  Google Scholar 

  60. 60

    Savagner, P., Yamada, K.M. & Thiery, J.P. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J. Cell Biol. 137, 1403–1419 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61

    Mani, S.A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Morel, A.P. et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3, e2888 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. 63

    Puisieux, A., Brabletz, T. & Caramel, J. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol. 16, 488–494 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64

    Ye, X. et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 525, 256–260 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    Guo, W. et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148, 1015–1028 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Nieto, M.A., Huang, R.Y., Jackson, R.A. & Thiery, J.P. EMT: 2016. Cell 166, 21–45 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67

    Celià-Terrassa, T. et al. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J. Clin. Invest. 122, 1849–1868 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. 68

    Tran, H.D. et al. Transient SNAIL1 expression is necessary for metastatic competence in breast cancer. Cancer Res. 74, 6330–6340 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    Tsai, J.H., Donaher, J.L., Murphy, D.A., Chau, S. & Yang, J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22, 725–736 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70

    Ocaña, O.H. et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22, 709–724 (2012).

    PubMed  Article  CAS  Google Scholar 

  71. 71

    Beerling, E. et al. Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Reports 14, 2281–2288 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72

    Beck, B. et al. Different levels of Twist1 regulate skin tumor initiation, stemness, and progression. Cell Stem Cell 16, 67–79 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73

    Chaffer, C.L. et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154, 61–74 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74

    Schmidt, J.M. et al. Stem-cell-like properties and epithelial plasticity arise as stable traits after transient Twist1 activation. Cell Reports 10, 131–139 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75

    Suda, T., Takubo, K. & Semenza, G.L. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9, 298–310 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76

    Simsek, T. et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7, 380–390 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Maryanovich, M. et al. An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate. Nat. Commun. 6, 7901 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78

    Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    CAS  Article  Google Scholar 

  79. 79

    Ryall, J.G. et al. The NAD+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16, 171–183 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80

    Rodríguez-Colman, M.J. et al. Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 543, 424–427 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  81. 81

    Yilmaz, O.H. et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486, 490–495 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82

    Viale, A. et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628–632 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83

    Sancho, P. et al. MYC/PGC-1a balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab. 22, 590–605 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84

    Peiris-Pagès, M., Martinez-Outschoorn, U.E., Pestell, R.G., Sotgia, F. & Lisanti, M.P. Cancer stem cell metabolism. Breast Cancer Res. 18, 55 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  85. 85

    Sancho, P., Barneda, D. & Heeschen, C. Hallmarks of cancer stem cell metabolism. Br. J. Cancer 114, 1305–1312 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    Vlashi, E. et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc. Natl. Acad. Sci. USA 108, 16062–16067 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87

    Flavahan, W.A. et al. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat. Neurosci. 16, 1373–1382 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88

    Dong, C. et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23, 316–331 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89

    Krebs, A.M. et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat. Cell Biol. 19, 518–529 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90

    Dupuy, F. et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab. 22, 577–589 (2015).

    CAS  PubMed  Article  Google Scholar 

  91. 91

    Pascual, G. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2017).

    CAS  PubMed  Article  Google Scholar 

  92. 92

    Ye, H. et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell 19, 23–37 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93

    Borst, P. Cancer drug pan-resistance: pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what? Open Biol. 2, 120066 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. 94

    Holohan, C., Van Schaeybroeck, S., Longley, D.B. & Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013).

    CAS  PubMed  Article  Google Scholar 

  95. 95

    Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96

    Li, X. et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl. Cancer Inst. 100, 672–679 (2008).

    CAS  PubMed  Article  Google Scholar 

  97. 97

    Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98

    Clarkson, B., et al. Studies of cellular proliferation in human leukemia .3. Behavior of leukemic cells in three adults with acute leukemia given continuous infusions of 3H-thymidine for 8 or 10 days. Cancer 25, 1237–1260 (1970).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99

    Killmann, S.A., Cronkite, E.P., Robertson, J.S., Fliedner, T.M. & Bond, V.P. Estimation of phases of the life cycle of leukemic cells from labeling in human beings in vivo with tritiated thymidine. Lab. Invest. 12, 671–684 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Clarkson, B.D. Review of recent studies of cellular proliferation in acute leukemia. Natl. Cancer Inst. Monogr. 30, 81–120 (1969).

    CAS  PubMed  Google Scholar 

  101. 101

    Clarkson, B. The survival value of the dormant state in neoplastic and normal populations. in Control of Proliferation in Animal Cells. (eds. Clarkson, B., Baserga, R.) 945–972 (Cold Spring Harbor Laboratory, New York, NY, 1974).

    Google Scholar 

  102. 102

    Clarkson, B.D. & Fried, J. Changing concepts of treatment in acute leukemia. Med. Clin. North Am. 55, 561–600 (1971).

    CAS  PubMed  Article  Google Scholar 

  103. 103

    Cronkite, E.P. Acute leukemia: is there a relationship between cell growth kinetics and response to chemotherapy? Proc. Natl. Cancer Conf. 6, 113–117 (1970).

    CAS  PubMed  Google Scholar 

  104. 104

    Kreso, A. et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339, 543–548 (2013).

    CAS  PubMed  Article  Google Scholar 

  105. 105

    Massagué, J. TGFb signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616–630 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  106. 106

    Bragado, P. et al. TGF-b2 dictates disseminated tumour cell fate in target organs through TGF-b-RIII and p38a/b signalling. Nat. Cell Biol. 15, 1351–1361 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107

    Liau, B.B. et al. Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell 20, 233–246 (2017).

    CAS  PubMed  Article  Google Scholar 

  108. 108

    Kurtova, A.V. et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517, 209–213 (2015).

    CAS  PubMed  Article  Google Scholar 

  109. 109

    Creighton, C.J. et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl. Acad. Sci. USA 106, 13820–13825 (2009).

    CAS  PubMed  Article  Google Scholar 

  110. 110

    Roesch, A. et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141, 583–594 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111

    Roesch, A. et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell 23, 811–825 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112

    Stange, D.E. et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155, 357–368 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113

    Wei, L. et al. Inhibition of CDK4/6 protects against radiation-induced intestinal injury in mice. J. Clin. Invest. 126, 4076–4087 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  114. 114

    Nowak, D., Stewart, D. & Koeffler, H.P. Differentiation therapy of leukemia: 3 decades of development. Blood 113, 3655–3665 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115

    Stahl, M. et al. Epigenetics in cancer: a hematological perspective. PLoS Genet. 12, e1006193 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  116. 116

    Harris, W.J. et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 21, 473–487 (2012).

    CAS  PubMed  Article  Google Scholar 

  117. 117

    Kreso, A. et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat. Med. 20, 29–36 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. 118

    Boumahdi, S. et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature 511, 246–250 (2014).

    CAS  PubMed  Article  Google Scholar 

  119. 119

    Junttila, M.R. et al. Targeting LGR5+ cells with an antibody-drug conjugate for the treatment of colon cancer. Sci. Transl. Med. 7, 314ra186 (2015).

    PubMed  Article  Google Scholar 

  120. 120

    Gong, X. et al. LGR5-targeted antibody-drug conjugate eradicates gastrointestinal tumors and prevents recurrence. Mol. Cancer Ther. 15, 1580–1590 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  121. 121

    Saunders, L.R. et al. A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci. Transl. Med. 7, 302ra136 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  122. 122

    Takeishi, S. et al. Ablation of Fbxw7 eliminates leukemia-initiating cells by preventing quiescence. Cancer Cell 23, 347–361 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  123. 123

    Reavie, L. et al. Regulation of c-Myc ubiquitination controls chronic myelogenous leukemia initiation and progression. Cancer Cell 23, 362–375 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124

    Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    CAS  PubMed  Article  Google Scholar 

  125. 125

    Anastas, J.N. & Moon, R.T. WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 13, 11–26 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126

    Nile, A.H. & Hannoush, R.N. Fatty acylation of Wnt proteins. Nat. Chem. Biol. 12, 60–69 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  127. 127

    Jiang, X. et al. Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc. Natl. Acad. Sci. USA 110, 12649–12654 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  128. 128

    Koo, B.K., van Es, J.H., van den Born, M. & Clevers, H. Porcupine inhibitor suppresses paracrine Wnt-driven growth of Rnf43;Znrf3-mutant neoplasia. Proc. Natl. Acad. Sci. USA 112, 7548–7550 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129

    van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. 130

    Tammela, T. et al. A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature 545, 355–359 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131

    Steinhart, Z. et al. Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat. Med. 23, 60–68 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  132. 132

    Seshagiri, S. et al. Recurrent R-spondin fusions in colon cancer. Nature 488, 660–664 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133

    Storm, E.E. et al. Targeting PTPRK-RSPO3 colon tumours promotes differentiation and loss of stem-cell function. Nature 529, 97–100 (2016).

    CAS  PubMed  Article  Google Scholar 

  134. 134

    Emami, K.H. et al. A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc. Natl. Acad. Sci. USA 101, 12682–12687 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  135. 135

    Novellasdemunt, L., Antas, P. & Li, V.S. Targeting Wnt signaling in colorectal cancer. A review in the theme: cell signaling: proteins, pathways and mechanisms. Am. J. Physiol. Cell Physiol. 309, C511–C521 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136

    Kahn, M. Can we safely target the WNT pathway? Nat. Rev. Drug Discov. 13, 513–532 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. 137

    Matano, M. et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015).

    CAS  Article  Google Scholar 

  138. 138

    Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).

    CAS  Article  Google Scholar 

  139. 139

    Fumagalli, A. et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc. Natl. Acad. Sci. USA 114, E2357–E2364 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  140. 140

    Fujii, M. et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18, 827–838 (2016).

    CAS  PubMed  Article  Google Scholar 

  141. 141

    Oskarsson, T. et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med. 17, 867–874 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. 142

    Malanchi, I. et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481, 85–89 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  143. 143

    McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  144. 144

    Takebe, N. et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat. Rev. Clin. Oncol. 12, 445–464 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. 145

    Andersson, E.R. & Lendahl, U. Therapeutic modulation of Notch signalling--are we there yet? Nat. Rev. Drug Discov. 13, 357–378 (2014).

    CAS  Article  Google Scholar 

  146. 146

    Laszlo, G.S., Estey, E.H. & Walter, R.B. The past and future of CD33 as therapeutic target in acute myeloid leukemia. Blood Rev. 28, 143–153 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  147. 147

    de Goeij, B.E. & Lambert, J.M. New developments for antibody-drug conjugate-based therapeutic approaches. Curr. Opin. Immunol. 40, 14–23 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  148. 148

    Nervi, C., De Marinis, E. & Codacci-Pisanelli, G. Epigenetic treatment of solid tumours: a review of clinical trials. Clin. Epigenetics 7, 127 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  149. 149

    Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  150. 150

    Blanpain, C. & Simons, B.D. Unravelling stem cell dynamics by lineage tracing. Nat. Rev. Mol. Cell Biol. 14, 489–502 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  151. 151

    Tata, P.R. & Rajagopal, J. Cellular plasticity: 1712 to the present day. Curr. Opin. Cell Biol. 43, 46–54 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  152. 152

    Llorens-Bobadilla, E. & Martin-Villalba, A. Adult NSC diversity and plasticity: the role of the niche. Curr. Opin. Neurobiol. 42, 68–74 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  153. 153

    Blanpain, C., Lowry, W.E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).

    CAS  PubMed  Article  Google Scholar 

  154. 154

    Morris, R.J. et al. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22, 411–417 (2004).

    CAS  PubMed  Article  Google Scholar 

  155. 155

    Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat. Med. 11, 1351–1354 (2005).

    CAS  PubMed  Article  Google Scholar 

  156. 156

    Stingl, J. et al. Purification and unique properties of mammary epithelial stem cells. Nature 439, 993–997 (2006).

    CAS  PubMed  Article  Google Scholar 

  157. 157

    Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature 439, 84–88 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. 158

    Van Keymeulen, A. et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 479, 189–193 (2011).

    CAS  PubMed  Article  Google Scholar 

  159. 159

    Prater, M.D. et al. Mammary stem cells have myoepithelial cell properties. Nat. Cell Biol. 16, 942–950 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  160. 160

    Rios, A.C., Fu, N.Y., Lindeman, G.J. & Visvader, J.E. In situ identification of bipotent stem cells in the mammary gland. Nature 506, 322–327 (2014).

    CAS  PubMed  Article  Google Scholar 

  161. 161

    Wuidart, A. et al. Quantitative lineage-tracing strategies to resolve multipotency in tissue-specific stem cells. Genes Dev. 30, 1261–1277 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  162. 162

    Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. 163

    Busch, K. et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518, 542–546 (2015).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of E.B. is supported by Fundación Botín and Banco Santander, through Santander Universities and the European Research Council (advanced grant no. 340176). We thank E. Sancho and J. Stanisavljevic for proofreading the manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Eduard Batlle or Hans Clevers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Batlle, E., Clevers, H. Cancer stem cells revisited. Nat Med 23, 1124–1134 (2017). https://doi.org/10.1038/nm.4409

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing