Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long noncoding RNA EGFR-AS1 mediates epidermal growth factor receptor addiction and modulates treatment response in squamous cell carcinoma

Abstract

Targeting EGFR is a validated approach in the treatment of squamous-cell cancers (SCCs), although there are no established biomarkers for predicting response. We have identified a synonymous mutation in EGFR, c.2361G>A (encoding p.Gln787Gln), in two patients with head and neck SCC (HNSCC) who were exceptional responders to gefitinib, and we showed in patient-derived cultures that the A/A genotype was associated with greater sensitivity to tyrosine kinase inhibitors (TKIs) as compared to the G/A and G/G genotypes. Remarkably, single-copy G>A nucleotide editing in isogenic models conferred a 70-fold increase in sensitivity due to decreased stability of the EGFR-AS1 long noncoding RNA (lncRNA). In the appropriate context, sensitivity could be recapitulated through EGFR-AS1 knockdown in vitro and in vivo, whereas overexpression was sufficient to induce resistance to TKIs. Reduced EGFR-AS1 levels shifted splicing toward EGFR isoform D, leading to ligand-mediated pathway activation. In co-clinical trials involving patients and patient-derived xenograft (PDX) models, tumor shrinkage was most pronounced in the context of the A/A genotype for EGFR-Q787Q, low expression of EGFR-AS1 and high expression of EGFR isoform D. Our study reveals how a 'silent' mutation influences the levels of a lncRNA, resulting in noncanonical EGFR addiction, and delineates a new predictive biomarker suite for response to EGFR TKIs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EGFR p.Gln787Gln status correlates with sensitivity of patient-derived HNSCC cell lines to EGFR TKIs.
Figure 2: The lncRNA EGFR-AS1 modulates sensitivity to EGFR TKIs.
Figure 3: LncRNA EGFR-AS1 alters the expression of EGFR isoforms and modulates ligand-dependent EGFR addiction.
Figure 4: The EGFR genotype for p.Gln787Gln correlates with EGFR-AS1 levels, EGFR isoform ratio and response to EGFR TKI treatment in patients.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Cripps, C., Winquist, E., Devries, M.C., Stys-Norman, D. & Gilbert, R. Epidermal growth factor receptor targeted therapy in stages III and IV head and neck cancer. Curr. Oncol. 17, 37–48 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Montero, P.H. et al. Changing trends in smoking and alcohol consumption in patients with oral cancer treated at Memorial Sloan-Kettering Cancer Center from 1985 to 2009. Arch. Otolaryngol. Head Neck Surg. 138, 817–822 (2012).

    Article  PubMed  Google Scholar 

  3. Krishna Rao, S.V., Mejia, G., Roberts-Thomson, K. & Logan, R. Epidemiology of oral cancer in Asia in the past decade—an update (2000–2012). Asian Pac. J. Cancer Prev. 14, 5567–5577 (2013).

    Article  PubMed  Google Scholar 

  4. Warnakulasuriya, S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 45, 309–316 (2009).

    Article  PubMed  Google Scholar 

  5. Ng, J.H., Iyer, N.G., Tan, M.H. & Edgren, G. Changing epidemiology of oral squamous cell carcinoma of the tongue: a global study. Head Neck 39, 297–304 (2017).

    Article  PubMed  Google Scholar 

  6. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Sacco, A.G. & Cohen, E.E. Current treatment options for recurrent or metastatic head and neck squamous cell carcinoma. J. Clin. Oncol. 33, 3305–3313 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Vermorken, J.B. et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N. Engl. J. Med. 359, 1116–1127 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Echarri, M.J., Lopez-Martin, A. & Hitt, R. Targeted therapy in locally advanced and recurrent/metastatic head and neck squamous cell carcinoma (LA-R/M HNSCC). Cancers (Basel) 8, E27 (2016).

    Article  CAS  Google Scholar 

  10. Licitra, L. et al. Evaluation of EGFR gene copy number as a predictive biomarker for the efficacy of cetuximab in combination with chemotherapy in the first-line treatment of recurrent and/or metastatic squamous cell carcinoma of the head and neck: EXTREME study. Ann. Oncol. 22, 1078–1087 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Stewart, J.S. et al. Phase III study of gefitinib compared with intravenous methotrexate for recurrent squamous cell carcinoma of the head and neck. J. Clin. Oncol. 27, 1864–1871 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Kirby, A.M. et al. Gefitinib (ZD1839, Iressa) as palliative treatment in recurrent or metastatic head and neck cancer. Br. J. Cancer 94, 631–636 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cohen, E.E. et al. Phase II trial of gefitinib 250 mg daily in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. Clin. Cancer Res. 11, 8418–8424 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Thomas, F. et al. Pilot study of neoadjuvant treatment with erlotinib in nonmetastatic head and neck squamous cell carcinoma. Clin. Cancer Res. 13, 7086–7092 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Soulieres, D. et al. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J. Clin. Oncol. 22, 77–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Tan, D.S. et al. Biomarker-driven early clinical trials in oncology: a paradigm shift in drug development. Cancer J. 15, 406–420 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Vettore, A.L. et al. Mutational landscapes of tongue carcinoma reveal recurrent mutations in genes of therapeutic and prognostic relevance. Genome Med. 7, 98 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tan, D.S. et al. Tongue carcinoma infrequently harbor common actionable genetic alterations. BMC Cancer 14, 679 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cohen, E.E. et al. Factors associated with clinical benefit from epidermal growth factor receptor inhibitors in recurrent and metastatic squamous cell carcinoma of the head and neck. Oral Oncol. 45, e155–e160 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Tan, E.H. et al. Gefitinib, cisplatin, and concurrent radiotherapy for locally advanced head and neck cancer: EGFR FISH, protein expression, and mutational status are not predictive biomarkers. Ann. Oncol. 23, 1010–1016 (2012).

    Article  PubMed  Google Scholar 

  21. Taguchi, T., Tsukuda, M., Imagawa-Ishiguro, Y., Kato, Y. & Sano, D. Involvement of EGFR in the response of squamous cell carcinoma of the head and neck cell lines to gefitinib. Oncol. Rep. 19, 65–71 (2008).

    CAS  PubMed  Google Scholar 

  22. Leong, H.S. et al. Targeting cancer stem cell plasticity through modulation of epidermal growth factor and insulin-like growth factor receptor signaling in head and neck squamous cell cancer. Stem Cells Transl. Med. 3, 1055–1065 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guillaudeau, A. et al. Adult diffuse gliomas produce mRNA transcripts encoding EGFR isoforms lacking a tyrosine kinase domain. Int. J. Oncol. 40, 1142–1152 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Adamczyk, K.A. et al. Characterization of soluble and exosomal forms of the EGFR released from pancreatic cancer cells. Life Sci. 89, 304–312 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Chia, S. et al. Phenotype-driven precision oncology—guiding clinical decisions one patient-at-a-time. Nat. Commun. (in the press).

  26. Iyer, M.K. et al. The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet. 47, 199–208 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmitt, A.M. & Chang, H.Y. Long noncoding RNAs in cancer pathways. Cancer Cell 29, 452–463 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brown, J.A. et al. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat. Struct. Mol. Biol. 21, 633–640 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qi, H.L. et al. The long noncoding RNA, EGFR-AS1, a target of GHR, increases the expression of EGFR in hepatocellular carcinoma. Tumour Biol. 37, 1079–1089 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Blythe, A.J., Fox, A.H. & Bond, C.S. The ins and outs of lncRNA structure: how, why and what comes next? Biochim. Biophys. Acta 1859, 46–58 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Ji, Z., Song, R., Regev, A. & Struhl, K. Many lncRNAs, 5′UTRs, and pseudogenes are translated and some are likely to express functional proteins. eLife 4, e08890 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Munroe, S.H. & Lazar, M.A. Inhibition of c-erbA mRNA splicing by a naturally occurring antisense RNA. J. Biol. Chem. 266, 22083–22086 (1991).

    CAS  PubMed  Google Scholar 

  33. Halle, C. et al. Membranous expression of ectodomain isoforms of the epidermal growth factor receptor predicts outcome after chemoradiotherapy of lymph node–negative cervical cancer. Clin. Cancer Res. 17, 5501–5512 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Lococo, F. et al. Preliminary evidence on the diagnostic and molecular role of circulating soluble EGFR in non–small cell lung cancer. Int. J. Mol. Sci. 16, 19612–19630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Romero-Ventosa, E.Y. et al. Pretreatment levels of the serum biomarkers CEA, CYFRA 21-1, SCC and the soluble EGFR and its ligands EGF, TGF-α, HB-EGF in the prediction of outcome in erlotinib treated non-small-cell lung cancer patients. Springerplus 4, 171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Albitar, L. et al. EGFR isoforms and gene regulation in human endometrial cancer cells. Mol. Cancer 9, 166 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou, T., Kim, Y. & MacLeod, A.R. Targeting long noncoding RNA with antisense oligonucleotide technology as cancer therapeutics. Methods Mol. Biol. 1402, 199–213 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Golan, T. et al. RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget 6, 24560–24570 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tan, D.S., Mok, T.S. & Rebbeck, T.R. Cancer genomics: diversity and disparity across ethnicity and geography. J. Clin. Oncol. 34, 91–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Zhao, Y. et al. Kruppel-like factor 5 modulates p53-independent apoptosis through Pim1 survival kinase in cancer cells. Oncogene 27, 1–8 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Brumbaugh, C.D., Kim, H.J., Giovacchini, M. & Pourmand, N. NanoStriDE: normalization and differential expression analysis of NanoString nCounter data. BMC Bioinformatics 12, 479 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Garrison, P., Yue, S., Hanson, J., Baron, J. & Lui, J.C. Spatial regulation of bone morphogenetic proteins (BMPs) in postnatal articular and growth plate cartilage. PLoS One 12, e0176752 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cerami, E. et al. The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to extend our gratitude to all patients and families involved in this study. We would also like to thank C. Chuan Young Ng of the National Cancer Centre Singapore Genomics Service for technical support with the NanoString assays. D.S.W.T. and N.G.I. are both supported by National Medical Research Council (NMRC) (Singapore) clinician–scientist awards (D.S.W.T.: NMRC/CSA/007/2016; N.G.I.: NMRC/CSA/042/2012, NMRC/CSA-INV/011/2016). Further support for this project was obtained from NMRC (grant no. NMRC/1304/2011, NMRC/CIRG/1434/2015), National Cancer Centre Research Funds and a Singhealth Foundation Grant (SHF/FG496P/2012).

Author information

Authors and Affiliations

Authors

Contributions

D.S.W.T. and N.G.I. conceived and designed the study. F.T.C., H.S.L., S.Y.T., D.P.L., X.L.K., X.Z., G.M.S. and G.S.T. performed experiments, with additional technical guidance and expertise from B.T.C., T.K.H.L., P.S., B.C. and R.D. M.M.C. and A.J.S. performed computational analysis. D.S.W.T., W.T.L., E.H.T. and M.K.A. conducted the co-clinical trials through the IMPACT protocol. F.T.C., H.S.L., S.Y.T. and N.G.I. performed statistical analyses. D.S.W.T. and N.G.I. wrote the manuscript, with extensive input from all authors.

Corresponding authors

Correspondence to Daniel S W Tan or N Gopalakrishna Iyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures & Tables

Supplementary Figures 1–4 & Supplementary Tables 1–4 (PDF 21526 kb)

Life Sciences Reporting Summary (PDF 158 kb)

Supplementary Data

Supplementary Data (PDF 16045 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, D., Chong, F., Leong, H. et al. Long noncoding RNA EGFR-AS1 mediates epidermal growth factor receptor addiction and modulates treatment response in squamous cell carcinoma. Nat Med 23, 1167–1175 (2017). https://doi.org/10.1038/nm.4401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4401

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer